Evaluate
\frac{200}{33}\approx 6.060606061
Factor
\frac{2 ^ {3} \cdot 5 ^ {2}}{3 \cdot 11} = 6\frac{2}{33} = 6.0606060606060606
Share
Copied to clipboard
\begin{array}{l}\phantom{99)}\phantom{1}\\99\overline{)600}\\\end{array}
Use the 1^{st} digit 6 from dividend 600
\begin{array}{l}\phantom{99)}0\phantom{2}\\99\overline{)600}\\\end{array}
Since 6 is less than 99, use the next digit 0 from dividend 600 and add 0 to the quotient
\begin{array}{l}\phantom{99)}0\phantom{3}\\99\overline{)600}\\\end{array}
Use the 2^{nd} digit 0 from dividend 600
\begin{array}{l}\phantom{99)}00\phantom{4}\\99\overline{)600}\\\end{array}
Since 60 is less than 99, use the next digit 0 from dividend 600 and add 0 to the quotient
\begin{array}{l}\phantom{99)}00\phantom{5}\\99\overline{)600}\\\end{array}
Use the 3^{rd} digit 0 from dividend 600
\begin{array}{l}\phantom{99)}006\phantom{6}\\99\overline{)600}\\\phantom{99)}\underline{\phantom{}594\phantom{}}\\\phantom{99)99}6\\\end{array}
Find closest multiple of 99 to 600. We see that 6 \times 99 = 594 is the nearest. Now subtract 594 from 600 to get reminder 6. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }6
Since 6 is less than 99, stop the division. The reminder is 6. The topmost line 006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}