Evaluate
\frac{50}{41}\approx 1.219512195
Factor
\frac{2 \cdot 5 ^ {2}}{41} = 1\frac{9}{41} = 1.2195121951219512
Share
Copied to clipboard
\begin{array}{l}\phantom{492)}\phantom{1}\\492\overline{)600}\\\end{array}
Use the 1^{st} digit 6 from dividend 600
\begin{array}{l}\phantom{492)}0\phantom{2}\\492\overline{)600}\\\end{array}
Since 6 is less than 492, use the next digit 0 from dividend 600 and add 0 to the quotient
\begin{array}{l}\phantom{492)}0\phantom{3}\\492\overline{)600}\\\end{array}
Use the 2^{nd} digit 0 from dividend 600
\begin{array}{l}\phantom{492)}00\phantom{4}\\492\overline{)600}\\\end{array}
Since 60 is less than 492, use the next digit 0 from dividend 600 and add 0 to the quotient
\begin{array}{l}\phantom{492)}00\phantom{5}\\492\overline{)600}\\\end{array}
Use the 3^{rd} digit 0 from dividend 600
\begin{array}{l}\phantom{492)}001\phantom{6}\\492\overline{)600}\\\phantom{492)}\underline{\phantom{}492\phantom{}}\\\phantom{492)}108\\\end{array}
Find closest multiple of 492 to 600. We see that 1 \times 492 = 492 is the nearest. Now subtract 492 from 600 to get reminder 108. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }108
Since 108 is less than 492, stop the division. The reminder is 108. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}