Evaluate
25
Factor
5^{2}
Share
Copied to clipboard
\begin{array}{l}\phantom{24)}\phantom{1}\\24\overline{)600}\\\end{array}
Use the 1^{st} digit 6 from dividend 600
\begin{array}{l}\phantom{24)}0\phantom{2}\\24\overline{)600}\\\end{array}
Since 6 is less than 24, use the next digit 0 from dividend 600 and add 0 to the quotient
\begin{array}{l}\phantom{24)}0\phantom{3}\\24\overline{)600}\\\end{array}
Use the 2^{nd} digit 0 from dividend 600
\begin{array}{l}\phantom{24)}02\phantom{4}\\24\overline{)600}\\\phantom{24)}\underline{\phantom{}48\phantom{9}}\\\phantom{24)}12\\\end{array}
Find closest multiple of 24 to 60. We see that 2 \times 24 = 48 is the nearest. Now subtract 48 from 60 to get reminder 12. Add 2 to quotient.
\begin{array}{l}\phantom{24)}02\phantom{5}\\24\overline{)600}\\\phantom{24)}\underline{\phantom{}48\phantom{9}}\\\phantom{24)}120\\\end{array}
Use the 3^{rd} digit 0 from dividend 600
\begin{array}{l}\phantom{24)}025\phantom{6}\\24\overline{)600}\\\phantom{24)}\underline{\phantom{}48\phantom{9}}\\\phantom{24)}120\\\phantom{24)}\underline{\phantom{}120\phantom{}}\\\phantom{24)999}0\\\end{array}
Find closest multiple of 24 to 120. We see that 5 \times 24 = 120 is the nearest. Now subtract 120 from 120 to get reminder 0. Add 5 to quotient.
\text{Quotient: }25 \text{Reminder: }0
Since 0 is less than 24, stop the division. The reminder is 0. The topmost line 025 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}