Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

600=2x^{2}-2x-12
Use the distributive property to multiply 2x+4 by x-3 and combine like terms.
2x^{2}-2x-12=600
Swap sides so that all variable terms are on the left hand side.
2x^{2}-2x-12-600=0
Subtract 600 from both sides.
2x^{2}-2x-612=0
Subtract 600 from -12 to get -612.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\left(-612\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -2 for b, and -612 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 2\left(-612\right)}}{2\times 2}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-8\left(-612\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-2\right)±\sqrt{4+4896}}{2\times 2}
Multiply -8 times -612.
x=\frac{-\left(-2\right)±\sqrt{4900}}{2\times 2}
Add 4 to 4896.
x=\frac{-\left(-2\right)±70}{2\times 2}
Take the square root of 4900.
x=\frac{2±70}{2\times 2}
The opposite of -2 is 2.
x=\frac{2±70}{4}
Multiply 2 times 2.
x=\frac{72}{4}
Now solve the equation x=\frac{2±70}{4} when ± is plus. Add 2 to 70.
x=18
Divide 72 by 4.
x=-\frac{68}{4}
Now solve the equation x=\frac{2±70}{4} when ± is minus. Subtract 70 from 2.
x=-17
Divide -68 by 4.
x=18 x=-17
The equation is now solved.
600=2x^{2}-2x-12
Use the distributive property to multiply 2x+4 by x-3 and combine like terms.
2x^{2}-2x-12=600
Swap sides so that all variable terms are on the left hand side.
2x^{2}-2x=600+12
Add 12 to both sides.
2x^{2}-2x=612
Add 600 and 12 to get 612.
\frac{2x^{2}-2x}{2}=\frac{612}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{2}{2}\right)x=\frac{612}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-x=\frac{612}{2}
Divide -2 by 2.
x^{2}-x=306
Divide 612 by 2.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=306+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=306+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=\frac{1225}{4}
Add 306 to \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{1225}{4}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1225}{4}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{35}{2} x-\frac{1}{2}=-\frac{35}{2}
Simplify.
x=18 x=-17
Add \frac{1}{2} to both sides of the equation.