Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(60x-45\right)=0
Factor out x.
x=0 x=\frac{3}{4}
To find equation solutions, solve x=0 and 60x-45=0.
60x^{2}-45x=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-45\right)±\sqrt{\left(-45\right)^{2}}}{2\times 60}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 60 for a, -45 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-45\right)±45}{2\times 60}
Take the square root of \left(-45\right)^{2}.
x=\frac{45±45}{2\times 60}
The opposite of -45 is 45.
x=\frac{45±45}{120}
Multiply 2 times 60.
x=\frac{90}{120}
Now solve the equation x=\frac{45±45}{120} when ± is plus. Add 45 to 45.
x=\frac{3}{4}
Reduce the fraction \frac{90}{120} to lowest terms by extracting and canceling out 30.
x=\frac{0}{120}
Now solve the equation x=\frac{45±45}{120} when ± is minus. Subtract 45 from 45.
x=0
Divide 0 by 120.
x=\frac{3}{4} x=0
The equation is now solved.
60x^{2}-45x=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{60x^{2}-45x}{60}=\frac{0}{60}
Divide both sides by 60.
x^{2}+\left(-\frac{45}{60}\right)x=\frac{0}{60}
Dividing by 60 undoes the multiplication by 60.
x^{2}-\frac{3}{4}x=\frac{0}{60}
Reduce the fraction \frac{-45}{60} to lowest terms by extracting and canceling out 15.
x^{2}-\frac{3}{4}x=0
Divide 0 by 60.
x^{2}-\frac{3}{4}x+\left(-\frac{3}{8}\right)^{2}=\left(-\frac{3}{8}\right)^{2}
Divide -\frac{3}{4}, the coefficient of the x term, by 2 to get -\frac{3}{8}. Then add the square of -\frac{3}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{4}x+\frac{9}{64}=\frac{9}{64}
Square -\frac{3}{8} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{3}{8}\right)^{2}=\frac{9}{64}
Factor x^{2}-\frac{3}{4}x+\frac{9}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{8}\right)^{2}}=\sqrt{\frac{9}{64}}
Take the square root of both sides of the equation.
x-\frac{3}{8}=\frac{3}{8} x-\frac{3}{8}=-\frac{3}{8}
Simplify.
x=\frac{3}{4} x=0
Add \frac{3}{8} to both sides of the equation.