Solve for x
x=\frac{2\sqrt{1509}}{15}-\frac{49}{10}\approx 0.27944656
x=-\frac{2\sqrt{1509}}{15}-\frac{49}{10}\approx -10.07944656
Graph
Share
Copied to clipboard
60x^{2}+588x-169=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-588±\sqrt{588^{2}-4\times 60\left(-169\right)}}{2\times 60}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 60 for a, 588 for b, and -169 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-588±\sqrt{345744-4\times 60\left(-169\right)}}{2\times 60}
Square 588.
x=\frac{-588±\sqrt{345744-240\left(-169\right)}}{2\times 60}
Multiply -4 times 60.
x=\frac{-588±\sqrt{345744+40560}}{2\times 60}
Multiply -240 times -169.
x=\frac{-588±\sqrt{386304}}{2\times 60}
Add 345744 to 40560.
x=\frac{-588±16\sqrt{1509}}{2\times 60}
Take the square root of 386304.
x=\frac{-588±16\sqrt{1509}}{120}
Multiply 2 times 60.
x=\frac{16\sqrt{1509}-588}{120}
Now solve the equation x=\frac{-588±16\sqrt{1509}}{120} when ± is plus. Add -588 to 16\sqrt{1509}.
x=\frac{2\sqrt{1509}}{15}-\frac{49}{10}
Divide -588+16\sqrt{1509} by 120.
x=\frac{-16\sqrt{1509}-588}{120}
Now solve the equation x=\frac{-588±16\sqrt{1509}}{120} when ± is minus. Subtract 16\sqrt{1509} from -588.
x=-\frac{2\sqrt{1509}}{15}-\frac{49}{10}
Divide -588-16\sqrt{1509} by 120.
x=\frac{2\sqrt{1509}}{15}-\frac{49}{10} x=-\frac{2\sqrt{1509}}{15}-\frac{49}{10}
The equation is now solved.
60x^{2}+588x-169=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
60x^{2}+588x-169-\left(-169\right)=-\left(-169\right)
Add 169 to both sides of the equation.
60x^{2}+588x=-\left(-169\right)
Subtracting -169 from itself leaves 0.
60x^{2}+588x=169
Subtract -169 from 0.
\frac{60x^{2}+588x}{60}=\frac{169}{60}
Divide both sides by 60.
x^{2}+\frac{588}{60}x=\frac{169}{60}
Dividing by 60 undoes the multiplication by 60.
x^{2}+\frac{49}{5}x=\frac{169}{60}
Reduce the fraction \frac{588}{60} to lowest terms by extracting and canceling out 12.
x^{2}+\frac{49}{5}x+\left(\frac{49}{10}\right)^{2}=\frac{169}{60}+\left(\frac{49}{10}\right)^{2}
Divide \frac{49}{5}, the coefficient of the x term, by 2 to get \frac{49}{10}. Then add the square of \frac{49}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{49}{5}x+\frac{2401}{100}=\frac{169}{60}+\frac{2401}{100}
Square \frac{49}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{49}{5}x+\frac{2401}{100}=\frac{2012}{75}
Add \frac{169}{60} to \frac{2401}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{49}{10}\right)^{2}=\frac{2012}{75}
Factor x^{2}+\frac{49}{5}x+\frac{2401}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{49}{10}\right)^{2}}=\sqrt{\frac{2012}{75}}
Take the square root of both sides of the equation.
x+\frac{49}{10}=\frac{2\sqrt{1509}}{15} x+\frac{49}{10}=-\frac{2\sqrt{1509}}{15}
Simplify.
x=\frac{2\sqrt{1509}}{15}-\frac{49}{10} x=-\frac{2\sqrt{1509}}{15}-\frac{49}{10}
Subtract \frac{49}{10} from both sides of the equation.
x ^ 2 +\frac{49}{5}x -\frac{169}{60} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 60
r + s = -\frac{49}{5} rs = -\frac{169}{60}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{49}{10} - u s = -\frac{49}{10} + u
Two numbers r and s sum up to -\frac{49}{5} exactly when the average of the two numbers is \frac{1}{2}*-\frac{49}{5} = -\frac{49}{10}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{49}{10} - u) (-\frac{49}{10} + u) = -\frac{169}{60}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{169}{60}
\frac{2401}{100} - u^2 = -\frac{169}{60}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{169}{60}-\frac{2401}{100} = -\frac{2012}{75}
Simplify the expression by subtracting \frac{2401}{100} on both sides
u^2 = \frac{2012}{75} u = \pm\sqrt{\frac{2012}{75}} = \pm \frac{\sqrt{2012}}{\sqrt{75}}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{49}{10} - \frac{\sqrt{2012}}{\sqrt{75}} = -10.079 s = -\frac{49}{10} + \frac{\sqrt{2012}}{\sqrt{75}} = 0.279
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}