Solve for x
x=\frac{\sqrt{275109}}{3000}-0.049\approx 0.125836114
x=-\frac{\sqrt{275109}}{3000}-0.049\approx -0.223836114
Graph
Share
Copied to clipboard
60x^{2}+5.88x-1.69=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-5.88±\sqrt{5.88^{2}-4\times 60\left(-1.69\right)}}{2\times 60}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 60 for a, 5.88 for b, and -1.69 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5.88±\sqrt{34.5744-4\times 60\left(-1.69\right)}}{2\times 60}
Square 5.88 by squaring both the numerator and the denominator of the fraction.
x=\frac{-5.88±\sqrt{34.5744-240\left(-1.69\right)}}{2\times 60}
Multiply -4 times 60.
x=\frac{-5.88±\sqrt{34.5744+405.6}}{2\times 60}
Multiply -240 times -1.69.
x=\frac{-5.88±\sqrt{440.1744}}{2\times 60}
Add 34.5744 to 405.6 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-5.88±\frac{\sqrt{275109}}{25}}{2\times 60}
Take the square root of 440.1744.
x=\frac{-5.88±\frac{\sqrt{275109}}{25}}{120}
Multiply 2 times 60.
x=\frac{\sqrt{275109}-147}{25\times 120}
Now solve the equation x=\frac{-5.88±\frac{\sqrt{275109}}{25}}{120} when ± is plus. Add -5.88 to \frac{\sqrt{275109}}{25}.
x=\frac{\sqrt{275109}}{3000}-\frac{49}{1000}
Divide \frac{-147+\sqrt{275109}}{25} by 120.
x=\frac{-\sqrt{275109}-147}{25\times 120}
Now solve the equation x=\frac{-5.88±\frac{\sqrt{275109}}{25}}{120} when ± is minus. Subtract \frac{\sqrt{275109}}{25} from -5.88.
x=-\frac{\sqrt{275109}}{3000}-\frac{49}{1000}
Divide \frac{-147-\sqrt{275109}}{25} by 120.
x=\frac{\sqrt{275109}}{3000}-\frac{49}{1000} x=-\frac{\sqrt{275109}}{3000}-\frac{49}{1000}
The equation is now solved.
60x^{2}+5.88x-1.69=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
60x^{2}+5.88x-1.69-\left(-1.69\right)=-\left(-1.69\right)
Add 1.69 to both sides of the equation.
60x^{2}+5.88x=-\left(-1.69\right)
Subtracting -1.69 from itself leaves 0.
60x^{2}+5.88x=1.69
Subtract -1.69 from 0.
\frac{60x^{2}+5.88x}{60}=\frac{1.69}{60}
Divide both sides by 60.
x^{2}+\frac{5.88}{60}x=\frac{1.69}{60}
Dividing by 60 undoes the multiplication by 60.
x^{2}+0.098x=\frac{1.69}{60}
Divide 5.88 by 60.
x^{2}+0.098x=\frac{169}{6000}
Divide 1.69 by 60.
x^{2}+0.098x+0.049^{2}=\frac{169}{6000}+0.049^{2}
Divide 0.098, the coefficient of the x term, by 2 to get 0.049. Then add the square of 0.049 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+0.098x+0.002401=\frac{169}{6000}+0.002401
Square 0.049 by squaring both the numerator and the denominator of the fraction.
x^{2}+0.098x+0.002401=\frac{91703}{3000000}
Add \frac{169}{6000} to 0.002401 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+0.049\right)^{2}=\frac{91703}{3000000}
Factor x^{2}+0.098x+0.002401. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+0.049\right)^{2}}=\sqrt{\frac{91703}{3000000}}
Take the square root of both sides of the equation.
x+0.049=\frac{\sqrt{275109}}{3000} x+0.049=-\frac{\sqrt{275109}}{3000}
Simplify.
x=\frac{\sqrt{275109}}{3000}-\frac{49}{1000} x=-\frac{\sqrt{275109}}{3000}-\frac{49}{1000}
Subtract 0.049 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}