Solve for w
w=\frac{23}{30}\approx 0.766666667
w=0
Share
Copied to clipboard
w\left(60w-46\right)=0
Factor out w.
w=0 w=\frac{23}{30}
To find equation solutions, solve w=0 and 60w-46=0.
60w^{2}-46w=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
w=\frac{-\left(-46\right)±\sqrt{\left(-46\right)^{2}}}{2\times 60}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 60 for a, -46 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-\left(-46\right)±46}{2\times 60}
Take the square root of \left(-46\right)^{2}.
w=\frac{46±46}{2\times 60}
The opposite of -46 is 46.
w=\frac{46±46}{120}
Multiply 2 times 60.
w=\frac{92}{120}
Now solve the equation w=\frac{46±46}{120} when ± is plus. Add 46 to 46.
w=\frac{23}{30}
Reduce the fraction \frac{92}{120} to lowest terms by extracting and canceling out 4.
w=\frac{0}{120}
Now solve the equation w=\frac{46±46}{120} when ± is minus. Subtract 46 from 46.
w=0
Divide 0 by 120.
w=\frac{23}{30} w=0
The equation is now solved.
60w^{2}-46w=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{60w^{2}-46w}{60}=\frac{0}{60}
Divide both sides by 60.
w^{2}+\left(-\frac{46}{60}\right)w=\frac{0}{60}
Dividing by 60 undoes the multiplication by 60.
w^{2}-\frac{23}{30}w=\frac{0}{60}
Reduce the fraction \frac{-46}{60} to lowest terms by extracting and canceling out 2.
w^{2}-\frac{23}{30}w=0
Divide 0 by 60.
w^{2}-\frac{23}{30}w+\left(-\frac{23}{60}\right)^{2}=\left(-\frac{23}{60}\right)^{2}
Divide -\frac{23}{30}, the coefficient of the x term, by 2 to get -\frac{23}{60}. Then add the square of -\frac{23}{60} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
w^{2}-\frac{23}{30}w+\frac{529}{3600}=\frac{529}{3600}
Square -\frac{23}{60} by squaring both the numerator and the denominator of the fraction.
\left(w-\frac{23}{60}\right)^{2}=\frac{529}{3600}
Factor w^{2}-\frac{23}{30}w+\frac{529}{3600}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(w-\frac{23}{60}\right)^{2}}=\sqrt{\frac{529}{3600}}
Take the square root of both sides of the equation.
w-\frac{23}{60}=\frac{23}{60} w-\frac{23}{60}=-\frac{23}{60}
Simplify.
w=\frac{23}{30} w=0
Add \frac{23}{60} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}