Factor
3\left(5s-1\right)\left(4s+3\right)
Evaluate
60s^{2}+33s-9
Share
Copied to clipboard
3\left(20s^{2}+11s-3\right)
Factor out 3.
a+b=11 ab=20\left(-3\right)=-60
Consider 20s^{2}+11s-3. Factor the expression by grouping. First, the expression needs to be rewritten as 20s^{2}+as+bs-3. To find a and b, set up a system to be solved.
-1,60 -2,30 -3,20 -4,15 -5,12 -6,10
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -60.
-1+60=59 -2+30=28 -3+20=17 -4+15=11 -5+12=7 -6+10=4
Calculate the sum for each pair.
a=-4 b=15
The solution is the pair that gives sum 11.
\left(20s^{2}-4s\right)+\left(15s-3\right)
Rewrite 20s^{2}+11s-3 as \left(20s^{2}-4s\right)+\left(15s-3\right).
4s\left(5s-1\right)+3\left(5s-1\right)
Factor out 4s in the first and 3 in the second group.
\left(5s-1\right)\left(4s+3\right)
Factor out common term 5s-1 by using distributive property.
3\left(5s-1\right)\left(4s+3\right)
Rewrite the complete factored expression.
60s^{2}+33s-9=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
s=\frac{-33±\sqrt{33^{2}-4\times 60\left(-9\right)}}{2\times 60}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
s=\frac{-33±\sqrt{1089-4\times 60\left(-9\right)}}{2\times 60}
Square 33.
s=\frac{-33±\sqrt{1089-240\left(-9\right)}}{2\times 60}
Multiply -4 times 60.
s=\frac{-33±\sqrt{1089+2160}}{2\times 60}
Multiply -240 times -9.
s=\frac{-33±\sqrt{3249}}{2\times 60}
Add 1089 to 2160.
s=\frac{-33±57}{2\times 60}
Take the square root of 3249.
s=\frac{-33±57}{120}
Multiply 2 times 60.
s=\frac{24}{120}
Now solve the equation s=\frac{-33±57}{120} when ± is plus. Add -33 to 57.
s=\frac{1}{5}
Reduce the fraction \frac{24}{120} to lowest terms by extracting and canceling out 24.
s=-\frac{90}{120}
Now solve the equation s=\frac{-33±57}{120} when ± is minus. Subtract 57 from -33.
s=-\frac{3}{4}
Reduce the fraction \frac{-90}{120} to lowest terms by extracting and canceling out 30.
60s^{2}+33s-9=60\left(s-\frac{1}{5}\right)\left(s-\left(-\frac{3}{4}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{5} for x_{1} and -\frac{3}{4} for x_{2}.
60s^{2}+33s-9=60\left(s-\frac{1}{5}\right)\left(s+\frac{3}{4}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
60s^{2}+33s-9=60\times \frac{5s-1}{5}\left(s+\frac{3}{4}\right)
Subtract \frac{1}{5} from s by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
60s^{2}+33s-9=60\times \frac{5s-1}{5}\times \frac{4s+3}{4}
Add \frac{3}{4} to s by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
60s^{2}+33s-9=60\times \frac{\left(5s-1\right)\left(4s+3\right)}{5\times 4}
Multiply \frac{5s-1}{5} times \frac{4s+3}{4} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
60s^{2}+33s-9=60\times \frac{\left(5s-1\right)\left(4s+3\right)}{20}
Multiply 5 times 4.
60s^{2}+33s-9=3\left(5s-1\right)\left(4s+3\right)
Cancel out 20, the greatest common factor in 60 and 20.
x ^ 2 +\frac{11}{20}x -\frac{3}{20} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 60
r + s = -\frac{11}{20} rs = -\frac{3}{20}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{11}{40} - u s = -\frac{11}{40} + u
Two numbers r and s sum up to -\frac{11}{20} exactly when the average of the two numbers is \frac{1}{2}*-\frac{11}{20} = -\frac{11}{40}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{11}{40} - u) (-\frac{11}{40} + u) = -\frac{3}{20}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{3}{20}
\frac{121}{1600} - u^2 = -\frac{3}{20}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{3}{20}-\frac{121}{1600} = -\frac{361}{1600}
Simplify the expression by subtracting \frac{121}{1600} on both sides
u^2 = \frac{361}{1600} u = \pm\sqrt{\frac{361}{1600}} = \pm \frac{19}{40}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{11}{40} - \frac{19}{40} = -0.750 s = -\frac{11}{40} + \frac{19}{40} = 0.200
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}