Solve for h
h = \frac{\sqrt{1111} + 1}{30} \approx 1.144388887
h=\frac{1-\sqrt{1111}}{30}\approx -1.077722221
Share
Copied to clipboard
60h^{2}-4h-74=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
h=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 60\left(-74\right)}}{2\times 60}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 60 for a, -4 for b, and -74 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
h=\frac{-\left(-4\right)±\sqrt{16-4\times 60\left(-74\right)}}{2\times 60}
Square -4.
h=\frac{-\left(-4\right)±\sqrt{16-240\left(-74\right)}}{2\times 60}
Multiply -4 times 60.
h=\frac{-\left(-4\right)±\sqrt{16+17760}}{2\times 60}
Multiply -240 times -74.
h=\frac{-\left(-4\right)±\sqrt{17776}}{2\times 60}
Add 16 to 17760.
h=\frac{-\left(-4\right)±4\sqrt{1111}}{2\times 60}
Take the square root of 17776.
h=\frac{4±4\sqrt{1111}}{2\times 60}
The opposite of -4 is 4.
h=\frac{4±4\sqrt{1111}}{120}
Multiply 2 times 60.
h=\frac{4\sqrt{1111}+4}{120}
Now solve the equation h=\frac{4±4\sqrt{1111}}{120} when ± is plus. Add 4 to 4\sqrt{1111}.
h=\frac{\sqrt{1111}+1}{30}
Divide 4+4\sqrt{1111} by 120.
h=\frac{4-4\sqrt{1111}}{120}
Now solve the equation h=\frac{4±4\sqrt{1111}}{120} when ± is minus. Subtract 4\sqrt{1111} from 4.
h=\frac{1-\sqrt{1111}}{30}
Divide 4-4\sqrt{1111} by 120.
h=\frac{\sqrt{1111}+1}{30} h=\frac{1-\sqrt{1111}}{30}
The equation is now solved.
60h^{2}-4h-74=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
60h^{2}-4h-74-\left(-74\right)=-\left(-74\right)
Add 74 to both sides of the equation.
60h^{2}-4h=-\left(-74\right)
Subtracting -74 from itself leaves 0.
60h^{2}-4h=74
Subtract -74 from 0.
\frac{60h^{2}-4h}{60}=\frac{74}{60}
Divide both sides by 60.
h^{2}+\left(-\frac{4}{60}\right)h=\frac{74}{60}
Dividing by 60 undoes the multiplication by 60.
h^{2}-\frac{1}{15}h=\frac{74}{60}
Reduce the fraction \frac{-4}{60} to lowest terms by extracting and canceling out 4.
h^{2}-\frac{1}{15}h=\frac{37}{30}
Reduce the fraction \frac{74}{60} to lowest terms by extracting and canceling out 2.
h^{2}-\frac{1}{15}h+\left(-\frac{1}{30}\right)^{2}=\frac{37}{30}+\left(-\frac{1}{30}\right)^{2}
Divide -\frac{1}{15}, the coefficient of the x term, by 2 to get -\frac{1}{30}. Then add the square of -\frac{1}{30} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
h^{2}-\frac{1}{15}h+\frac{1}{900}=\frac{37}{30}+\frac{1}{900}
Square -\frac{1}{30} by squaring both the numerator and the denominator of the fraction.
h^{2}-\frac{1}{15}h+\frac{1}{900}=\frac{1111}{900}
Add \frac{37}{30} to \frac{1}{900} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(h-\frac{1}{30}\right)^{2}=\frac{1111}{900}
Factor h^{2}-\frac{1}{15}h+\frac{1}{900}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(h-\frac{1}{30}\right)^{2}}=\sqrt{\frac{1111}{900}}
Take the square root of both sides of the equation.
h-\frac{1}{30}=\frac{\sqrt{1111}}{30} h-\frac{1}{30}=-\frac{\sqrt{1111}}{30}
Simplify.
h=\frac{\sqrt{1111}+1}{30} h=\frac{1-\sqrt{1111}}{30}
Add \frac{1}{30} to both sides of the equation.
x ^ 2 -\frac{1}{15}x -\frac{37}{30} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 60
r + s = \frac{1}{15} rs = -\frac{37}{30}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{1}{30} - u s = \frac{1}{30} + u
Two numbers r and s sum up to \frac{1}{15} exactly when the average of the two numbers is \frac{1}{2}*\frac{1}{15} = \frac{1}{30}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{1}{30} - u) (\frac{1}{30} + u) = -\frac{37}{30}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{37}{30}
\frac{1}{900} - u^2 = -\frac{37}{30}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{37}{30}-\frac{1}{900} = -\frac{1111}{900}
Simplify the expression by subtracting \frac{1}{900} on both sides
u^2 = \frac{1111}{900} u = \pm\sqrt{\frac{1111}{900}} = \pm \frac{\sqrt{1111}}{30}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{1}{30} - \frac{\sqrt{1111}}{30} = -1.078 s = \frac{1}{30} + \frac{\sqrt{1111}}{30} = 1.144
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}