Solve for r
r=\frac{5}{12}\approx 0.416666667
r=-12
Share
Copied to clipboard
60-139r-12r^{2}=0
Subtract 12r^{2} from both sides.
-12r^{2}-139r+60=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-139 ab=-12\times 60=-720
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -12r^{2}+ar+br+60. To find a and b, set up a system to be solved.
1,-720 2,-360 3,-240 4,-180 5,-144 6,-120 8,-90 9,-80 10,-72 12,-60 15,-48 16,-45 18,-40 20,-36 24,-30
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -720.
1-720=-719 2-360=-358 3-240=-237 4-180=-176 5-144=-139 6-120=-114 8-90=-82 9-80=-71 10-72=-62 12-60=-48 15-48=-33 16-45=-29 18-40=-22 20-36=-16 24-30=-6
Calculate the sum for each pair.
a=5 b=-144
The solution is the pair that gives sum -139.
\left(-12r^{2}+5r\right)+\left(-144r+60\right)
Rewrite -12r^{2}-139r+60 as \left(-12r^{2}+5r\right)+\left(-144r+60\right).
-r\left(12r-5\right)-12\left(12r-5\right)
Factor out -r in the first and -12 in the second group.
\left(12r-5\right)\left(-r-12\right)
Factor out common term 12r-5 by using distributive property.
r=\frac{5}{12} r=-12
To find equation solutions, solve 12r-5=0 and -r-12=0.
60-139r-12r^{2}=0
Subtract 12r^{2} from both sides.
-12r^{2}-139r+60=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
r=\frac{-\left(-139\right)±\sqrt{\left(-139\right)^{2}-4\left(-12\right)\times 60}}{2\left(-12\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -12 for a, -139 for b, and 60 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-\left(-139\right)±\sqrt{19321-4\left(-12\right)\times 60}}{2\left(-12\right)}
Square -139.
r=\frac{-\left(-139\right)±\sqrt{19321+48\times 60}}{2\left(-12\right)}
Multiply -4 times -12.
r=\frac{-\left(-139\right)±\sqrt{19321+2880}}{2\left(-12\right)}
Multiply 48 times 60.
r=\frac{-\left(-139\right)±\sqrt{22201}}{2\left(-12\right)}
Add 19321 to 2880.
r=\frac{-\left(-139\right)±149}{2\left(-12\right)}
Take the square root of 22201.
r=\frac{139±149}{2\left(-12\right)}
The opposite of -139 is 139.
r=\frac{139±149}{-24}
Multiply 2 times -12.
r=\frac{288}{-24}
Now solve the equation r=\frac{139±149}{-24} when ± is plus. Add 139 to 149.
r=-12
Divide 288 by -24.
r=-\frac{10}{-24}
Now solve the equation r=\frac{139±149}{-24} when ± is minus. Subtract 149 from 139.
r=\frac{5}{12}
Reduce the fraction \frac{-10}{-24} to lowest terms by extracting and canceling out 2.
r=-12 r=\frac{5}{12}
The equation is now solved.
60-139r-12r^{2}=0
Subtract 12r^{2} from both sides.
-139r-12r^{2}=-60
Subtract 60 from both sides. Anything subtracted from zero gives its negation.
-12r^{2}-139r=-60
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-12r^{2}-139r}{-12}=-\frac{60}{-12}
Divide both sides by -12.
r^{2}+\left(-\frac{139}{-12}\right)r=-\frac{60}{-12}
Dividing by -12 undoes the multiplication by -12.
r^{2}+\frac{139}{12}r=-\frac{60}{-12}
Divide -139 by -12.
r^{2}+\frac{139}{12}r=5
Divide -60 by -12.
r^{2}+\frac{139}{12}r+\left(\frac{139}{24}\right)^{2}=5+\left(\frac{139}{24}\right)^{2}
Divide \frac{139}{12}, the coefficient of the x term, by 2 to get \frac{139}{24}. Then add the square of \frac{139}{24} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
r^{2}+\frac{139}{12}r+\frac{19321}{576}=5+\frac{19321}{576}
Square \frac{139}{24} by squaring both the numerator and the denominator of the fraction.
r^{2}+\frac{139}{12}r+\frac{19321}{576}=\frac{22201}{576}
Add 5 to \frac{19321}{576}.
\left(r+\frac{139}{24}\right)^{2}=\frac{22201}{576}
Factor r^{2}+\frac{139}{12}r+\frac{19321}{576}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r+\frac{139}{24}\right)^{2}}=\sqrt{\frac{22201}{576}}
Take the square root of both sides of the equation.
r+\frac{139}{24}=\frac{149}{24} r+\frac{139}{24}=-\frac{149}{24}
Simplify.
r=\frac{5}{12} r=-12
Subtract \frac{139}{24} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}