Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

\frac{60\left(-t+1\right)^{2}}{60}=\frac{486}{60}
Divide both sides by 60.
\left(-t+1\right)^{2}=\frac{486}{60}
Dividing by 60 undoes the multiplication by 60.
\left(-t+1\right)^{2}=\frac{81}{10}
Reduce the fraction \frac{486}{60} to lowest terms by extracting and canceling out 6.
-t+1=\frac{9\sqrt{10}}{10} -t+1=-\frac{9\sqrt{10}}{10}
Take the square root of both sides of the equation.
-t+1-1=\frac{9\sqrt{10}}{10}-1 -t+1-1=-\frac{9\sqrt{10}}{10}-1
Subtract 1 from both sides of the equation.
-t=\frac{9\sqrt{10}}{10}-1 -t=-\frac{9\sqrt{10}}{10}-1
Subtracting 1 from itself leaves 0.
-t=\frac{9\sqrt{10}}{10}-1
Subtract 1 from \frac{9\sqrt{10}}{10}.
-t=-\frac{9\sqrt{10}}{10}-1
Subtract 1 from -\frac{9\sqrt{10}}{10}.
\frac{-t}{-1}=\frac{\frac{9\sqrt{10}}{10}-1}{-1} \frac{-t}{-1}=\frac{-\frac{9\sqrt{10}}{10}-1}{-1}
Divide both sides by -1.
t=\frac{\frac{9\sqrt{10}}{10}-1}{-1} t=\frac{-\frac{9\sqrt{10}}{10}-1}{-1}
Dividing by -1 undoes the multiplication by -1.
t=-\frac{9\sqrt{10}}{10}+1
Divide \frac{9\sqrt{10}}{10}-1 by -1.
t=\frac{9\sqrt{10}}{10}+1
Divide -\frac{9\sqrt{10}}{10}-1 by -1.
t=-\frac{9\sqrt{10}}{10}+1 t=\frac{9\sqrt{10}}{10}+1
The equation is now solved.