Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

60x^{2}-30x-200=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 60\left(-200\right)}}{2\times 60}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-30\right)±\sqrt{900-4\times 60\left(-200\right)}}{2\times 60}
Square -30.
x=\frac{-\left(-30\right)±\sqrt{900-240\left(-200\right)}}{2\times 60}
Multiply -4 times 60.
x=\frac{-\left(-30\right)±\sqrt{900+48000}}{2\times 60}
Multiply -240 times -200.
x=\frac{-\left(-30\right)±\sqrt{48900}}{2\times 60}
Add 900 to 48000.
x=\frac{-\left(-30\right)±10\sqrt{489}}{2\times 60}
Take the square root of 48900.
x=\frac{30±10\sqrt{489}}{2\times 60}
The opposite of -30 is 30.
x=\frac{30±10\sqrt{489}}{120}
Multiply 2 times 60.
x=\frac{10\sqrt{489}+30}{120}
Now solve the equation x=\frac{30±10\sqrt{489}}{120} when ± is plus. Add 30 to 10\sqrt{489}.
x=\frac{\sqrt{489}}{12}+\frac{1}{4}
Divide 30+10\sqrt{489} by 120.
x=\frac{30-10\sqrt{489}}{120}
Now solve the equation x=\frac{30±10\sqrt{489}}{120} when ± is minus. Subtract 10\sqrt{489} from 30.
x=-\frac{\sqrt{489}}{12}+\frac{1}{4}
Divide 30-10\sqrt{489} by 120.
60x^{2}-30x-200=60\left(x-\left(\frac{\sqrt{489}}{12}+\frac{1}{4}\right)\right)\left(x-\left(-\frac{\sqrt{489}}{12}+\frac{1}{4}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{4}+\frac{\sqrt{489}}{12} for x_{1} and \frac{1}{4}-\frac{\sqrt{489}}{12} for x_{2}.