Factor
60\left(x+1\right)^{2}
Evaluate
60\left(x+1\right)^{2}
Graph
Share
Copied to clipboard
60\left(x^{2}+2x+1\right)
Factor out 60.
\left(x+1\right)^{2}
Consider x^{2}+2x+1. Use the perfect square formula, a^{2}+2ab+b^{2}=\left(a+b\right)^{2}, where a=x and b=1.
60\left(x+1\right)^{2}
Rewrite the complete factored expression.
factor(60x^{2}+120x+60)
This trinomial has the form of a trinomial square, perhaps multiplied by a common factor. Trinomial squares can be factored by finding the square roots of the leading and trailing terms.
gcf(60,120,60)=60
Find the greatest common factor of the coefficients.
60\left(x^{2}+2x+1\right)
Factor out 60.
60\left(x+1\right)^{2}
The trinomial square is the square of the binomial that is the sum or difference of the square roots of the leading and trailing terms, with the sign determined by the sign of the middle term of the trinomial square.
60x^{2}+120x+60=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-120±\sqrt{120^{2}-4\times 60\times 60}}{2\times 60}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-120±\sqrt{14400-4\times 60\times 60}}{2\times 60}
Square 120.
x=\frac{-120±\sqrt{14400-240\times 60}}{2\times 60}
Multiply -4 times 60.
x=\frac{-120±\sqrt{14400-14400}}{2\times 60}
Multiply -240 times 60.
x=\frac{-120±\sqrt{0}}{2\times 60}
Add 14400 to -14400.
x=\frac{-120±0}{2\times 60}
Take the square root of 0.
x=\frac{-120±0}{120}
Multiply 2 times 60.
60x^{2}+120x+60=60\left(x-\left(-1\right)\right)\left(x-\left(-1\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -1 for x_{1} and -1 for x_{2}.
60x^{2}+120x+60=60\left(x+1\right)\left(x+1\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}