Skip to main content
Solve for L
Tick mark Image

Similar Problems from Web Search

Share

60\sqrt{L}=-\left(-L-6\right)
Subtract -L-6 from both sides of the equation.
60\sqrt{L}=-\left(-L\right)-\left(-6\right)
To find the opposite of -L-6, find the opposite of each term.
60\sqrt{L}=L-\left(-6\right)
The opposite of -L is L.
60\sqrt{L}=L+6
The opposite of -6 is 6.
\left(60\sqrt{L}\right)^{2}=\left(L+6\right)^{2}
Square both sides of the equation.
60^{2}\left(\sqrt{L}\right)^{2}=\left(L+6\right)^{2}
Expand \left(60\sqrt{L}\right)^{2}.
3600\left(\sqrt{L}\right)^{2}=\left(L+6\right)^{2}
Calculate 60 to the power of 2 and get 3600.
3600L=\left(L+6\right)^{2}
Calculate \sqrt{L} to the power of 2 and get L.
3600L=L^{2}+12L+36
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(L+6\right)^{2}.
3600L-L^{2}=12L+36
Subtract L^{2} from both sides.
3600L-L^{2}-12L=36
Subtract 12L from both sides.
3588L-L^{2}=36
Combine 3600L and -12L to get 3588L.
3588L-L^{2}-36=0
Subtract 36 from both sides.
-L^{2}+3588L-36=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
L=\frac{-3588±\sqrt{3588^{2}-4\left(-1\right)\left(-36\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 3588 for b, and -36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
L=\frac{-3588±\sqrt{12873744-4\left(-1\right)\left(-36\right)}}{2\left(-1\right)}
Square 3588.
L=\frac{-3588±\sqrt{12873744+4\left(-36\right)}}{2\left(-1\right)}
Multiply -4 times -1.
L=\frac{-3588±\sqrt{12873744-144}}{2\left(-1\right)}
Multiply 4 times -36.
L=\frac{-3588±\sqrt{12873600}}{2\left(-1\right)}
Add 12873744 to -144.
L=\frac{-3588±120\sqrt{894}}{2\left(-1\right)}
Take the square root of 12873600.
L=\frac{-3588±120\sqrt{894}}{-2}
Multiply 2 times -1.
L=\frac{120\sqrt{894}-3588}{-2}
Now solve the equation L=\frac{-3588±120\sqrt{894}}{-2} when ± is plus. Add -3588 to 120\sqrt{894}.
L=1794-60\sqrt{894}
Divide -3588+120\sqrt{894} by -2.
L=\frac{-120\sqrt{894}-3588}{-2}
Now solve the equation L=\frac{-3588±120\sqrt{894}}{-2} when ± is minus. Subtract 120\sqrt{894} from -3588.
L=60\sqrt{894}+1794
Divide -3588-120\sqrt{894} by -2.
L=1794-60\sqrt{894} L=60\sqrt{894}+1794
The equation is now solved.
60\sqrt{1794-60\sqrt{894}}-\left(1794-60\sqrt{894}\right)-6=0
Substitute 1794-60\sqrt{894} for L in the equation 60\sqrt{L}-L-6=0.
0=0
Simplify. The value L=1794-60\sqrt{894} satisfies the equation.
60\sqrt{60\sqrt{894}+1794}-\left(60\sqrt{894}+1794\right)-6=0
Substitute 60\sqrt{894}+1794 for L in the equation 60\sqrt{L}-L-6=0.
0=0
Simplify. The value L=60\sqrt{894}+1794 satisfies the equation.
L=1794-60\sqrt{894} L=60\sqrt{894}+1794
List all solutions of 60\sqrt{L}=L+6.