Evaluate
\frac{20}{17}\approx 1.176470588
Factor
\frac{2 ^ {2} \cdot 5}{17} = 1\frac{3}{17} = 1.1764705882352942
Share
Copied to clipboard
\begin{array}{l}\phantom{51)}\phantom{1}\\51\overline{)60}\\\end{array}
Use the 1^{st} digit 6 from dividend 60
\begin{array}{l}\phantom{51)}0\phantom{2}\\51\overline{)60}\\\end{array}
Since 6 is less than 51, use the next digit 0 from dividend 60 and add 0 to the quotient
\begin{array}{l}\phantom{51)}0\phantom{3}\\51\overline{)60}\\\end{array}
Use the 2^{nd} digit 0 from dividend 60
\begin{array}{l}\phantom{51)}01\phantom{4}\\51\overline{)60}\\\phantom{51)}\underline{\phantom{}51\phantom{}}\\\phantom{51)9}9\\\end{array}
Find closest multiple of 51 to 60. We see that 1 \times 51 = 51 is the nearest. Now subtract 51 from 60 to get reminder 9. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }9
Since 9 is less than 51, stop the division. The reminder is 9. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}