Evaluate
\frac{20}{7}\approx 2.857142857
Factor
\frac{2 ^ {2} \cdot 5}{7} = 2\frac{6}{7} = 2.857142857142857
Share
Copied to clipboard
\begin{array}{l}\phantom{21)}\phantom{1}\\21\overline{)60}\\\end{array}
Use the 1^{st} digit 6 from dividend 60
\begin{array}{l}\phantom{21)}0\phantom{2}\\21\overline{)60}\\\end{array}
Since 6 is less than 21, use the next digit 0 from dividend 60 and add 0 to the quotient
\begin{array}{l}\phantom{21)}0\phantom{3}\\21\overline{)60}\\\end{array}
Use the 2^{nd} digit 0 from dividend 60
\begin{array}{l}\phantom{21)}02\phantom{4}\\21\overline{)60}\\\phantom{21)}\underline{\phantom{}42\phantom{}}\\\phantom{21)}18\\\end{array}
Find closest multiple of 21 to 60. We see that 2 \times 21 = 42 is the nearest. Now subtract 42 from 60 to get reminder 18. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }18
Since 18 is less than 21, stop the division. The reminder is 18. The topmost line 02 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}