60 \% \text { of } ( x - y ) = 40 \% ( x + y )
Solve for x
x=5y
Solve for y
y=\frac{x}{5}
Graph
Share
Copied to clipboard
\frac{3}{5}\left(x-y\right)=\frac{40}{100}\left(x+y\right)
Reduce the fraction \frac{60}{100} to lowest terms by extracting and canceling out 20.
\frac{3}{5}x-\frac{3}{5}y=\frac{40}{100}\left(x+y\right)
Use the distributive property to multiply \frac{3}{5} by x-y.
\frac{3}{5}x-\frac{3}{5}y=\frac{2}{5}\left(x+y\right)
Reduce the fraction \frac{40}{100} to lowest terms by extracting and canceling out 20.
\frac{3}{5}x-\frac{3}{5}y=\frac{2}{5}x+\frac{2}{5}y
Use the distributive property to multiply \frac{2}{5} by x+y.
\frac{3}{5}x-\frac{3}{5}y-\frac{2}{5}x=\frac{2}{5}y
Subtract \frac{2}{5}x from both sides.
\frac{1}{5}x-\frac{3}{5}y=\frac{2}{5}y
Combine \frac{3}{5}x and -\frac{2}{5}x to get \frac{1}{5}x.
\frac{1}{5}x=\frac{2}{5}y+\frac{3}{5}y
Add \frac{3}{5}y to both sides.
\frac{1}{5}x=y
Combine \frac{2}{5}y and \frac{3}{5}y to get y.
\frac{\frac{1}{5}x}{\frac{1}{5}}=\frac{y}{\frac{1}{5}}
Multiply both sides by 5.
x=\frac{y}{\frac{1}{5}}
Dividing by \frac{1}{5} undoes the multiplication by \frac{1}{5}.
x=5y
Divide y by \frac{1}{5} by multiplying y by the reciprocal of \frac{1}{5}.
\frac{3}{5}\left(x-y\right)=\frac{40}{100}\left(x+y\right)
Reduce the fraction \frac{60}{100} to lowest terms by extracting and canceling out 20.
\frac{3}{5}x-\frac{3}{5}y=\frac{40}{100}\left(x+y\right)
Use the distributive property to multiply \frac{3}{5} by x-y.
\frac{3}{5}x-\frac{3}{5}y=\frac{2}{5}\left(x+y\right)
Reduce the fraction \frac{40}{100} to lowest terms by extracting and canceling out 20.
\frac{3}{5}x-\frac{3}{5}y=\frac{2}{5}x+\frac{2}{5}y
Use the distributive property to multiply \frac{2}{5} by x+y.
\frac{3}{5}x-\frac{3}{5}y-\frac{2}{5}y=\frac{2}{5}x
Subtract \frac{2}{5}y from both sides.
\frac{3}{5}x-y=\frac{2}{5}x
Combine -\frac{3}{5}y and -\frac{2}{5}y to get -y.
-y=\frac{2}{5}x-\frac{3}{5}x
Subtract \frac{3}{5}x from both sides.
-y=-\frac{1}{5}x
Combine \frac{2}{5}x and -\frac{3}{5}x to get -\frac{1}{5}x.
-y=-\frac{x}{5}
The equation is in standard form.
\frac{-y}{-1}=-\frac{\frac{x}{5}}{-1}
Divide both sides by -1.
y=-\frac{\frac{x}{5}}{-1}
Dividing by -1 undoes the multiplication by -1.
y=\frac{x}{5}
Divide -\frac{x}{5} by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}