Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

60=120-44x+4x^{2}
Use the distributive property to multiply 12-2x by 10-2x and combine like terms.
120-44x+4x^{2}=60
Swap sides so that all variable terms are on the left hand side.
120-44x+4x^{2}-60=0
Subtract 60 from both sides.
60-44x+4x^{2}=0
Subtract 60 from 120 to get 60.
4x^{2}-44x+60=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-44\right)±\sqrt{\left(-44\right)^{2}-4\times 4\times 60}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -44 for b, and 60 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-44\right)±\sqrt{1936-4\times 4\times 60}}{2\times 4}
Square -44.
x=\frac{-\left(-44\right)±\sqrt{1936-16\times 60}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-44\right)±\sqrt{1936-960}}{2\times 4}
Multiply -16 times 60.
x=\frac{-\left(-44\right)±\sqrt{976}}{2\times 4}
Add 1936 to -960.
x=\frac{-\left(-44\right)±4\sqrt{61}}{2\times 4}
Take the square root of 976.
x=\frac{44±4\sqrt{61}}{2\times 4}
The opposite of -44 is 44.
x=\frac{44±4\sqrt{61}}{8}
Multiply 2 times 4.
x=\frac{4\sqrt{61}+44}{8}
Now solve the equation x=\frac{44±4\sqrt{61}}{8} when ± is plus. Add 44 to 4\sqrt{61}.
x=\frac{\sqrt{61}+11}{2}
Divide 44+4\sqrt{61} by 8.
x=\frac{44-4\sqrt{61}}{8}
Now solve the equation x=\frac{44±4\sqrt{61}}{8} when ± is minus. Subtract 4\sqrt{61} from 44.
x=\frac{11-\sqrt{61}}{2}
Divide 44-4\sqrt{61} by 8.
x=\frac{\sqrt{61}+11}{2} x=\frac{11-\sqrt{61}}{2}
The equation is now solved.
60=120-44x+4x^{2}
Use the distributive property to multiply 12-2x by 10-2x and combine like terms.
120-44x+4x^{2}=60
Swap sides so that all variable terms are on the left hand side.
-44x+4x^{2}=60-120
Subtract 120 from both sides.
-44x+4x^{2}=-60
Subtract 120 from 60 to get -60.
4x^{2}-44x=-60
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4x^{2}-44x}{4}=-\frac{60}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{44}{4}\right)x=-\frac{60}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-11x=-\frac{60}{4}
Divide -44 by 4.
x^{2}-11x=-15
Divide -60 by 4.
x^{2}-11x+\left(-\frac{11}{2}\right)^{2}=-15+\left(-\frac{11}{2}\right)^{2}
Divide -11, the coefficient of the x term, by 2 to get -\frac{11}{2}. Then add the square of -\frac{11}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-11x+\frac{121}{4}=-15+\frac{121}{4}
Square -\frac{11}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-11x+\frac{121}{4}=\frac{61}{4}
Add -15 to \frac{121}{4}.
\left(x-\frac{11}{2}\right)^{2}=\frac{61}{4}
Factor x^{2}-11x+\frac{121}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{2}\right)^{2}}=\sqrt{\frac{61}{4}}
Take the square root of both sides of the equation.
x-\frac{11}{2}=\frac{\sqrt{61}}{2} x-\frac{11}{2}=-\frac{\sqrt{61}}{2}
Simplify.
x=\frac{\sqrt{61}+11}{2} x=\frac{11-\sqrt{61}}{2}
Add \frac{11}{2} to both sides of the equation.