Solve for s
s=-\frac{100\left(t^{2}+2\right)}{661\left(t^{2}-3\right)}
|t|\neq \sqrt{3}
Solve for t
t=\sqrt{\frac{1983s-200}{661s+100}}
t=-\sqrt{\frac{1983s-200}{661s+100}}\text{, }s\geq \frac{200}{1983}\text{ or }s<-\frac{100}{661}
Share
Copied to clipboard
6.61s\left(-t^{2}+3\right)=t^{2}+2
Multiply both sides of the equation by -t^{2}+3.
-6.61st^{2}+19.83s=t^{2}+2
Use the distributive property to multiply 6.61s by -t^{2}+3.
\left(-6.61t^{2}+19.83\right)s=t^{2}+2
Combine all terms containing s.
\frac{1983-661t^{2}}{100}s=t^{2}+2
The equation is in standard form.
\frac{100\times \frac{1983-661t^{2}}{100}s}{1983-661t^{2}}=\frac{100\left(t^{2}+2\right)}{1983-661t^{2}}
Divide both sides by -6.61t^{2}+19.83.
s=\frac{100\left(t^{2}+2\right)}{1983-661t^{2}}
Dividing by -6.61t^{2}+19.83 undoes the multiplication by -6.61t^{2}+19.83.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}