Solve for p
p=\frac{-5+i\sqrt{15}}{16}\approx -0.3125+0.242061459i
p=\frac{-i\sqrt{15}-5}{16}\approx -0.3125-0.242061459i
Share
Copied to clipboard
6.4p^{2}+4p+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-4±\sqrt{4^{2}-4\times 6.4}}{2\times 6.4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6.4 for a, 4 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-4±\sqrt{16-4\times 6.4}}{2\times 6.4}
Square 4.
p=\frac{-4±\sqrt{16-25.6}}{2\times 6.4}
Multiply -4 times 6.4.
p=\frac{-4±\sqrt{-9.6}}{2\times 6.4}
Add 16 to -25.6.
p=\frac{-4±\frac{4\sqrt{15}i}{5}}{2\times 6.4}
Take the square root of -9.6.
p=\frac{-4±\frac{4\sqrt{15}i}{5}}{12.8}
Multiply 2 times 6.4.
p=\frac{\frac{4\sqrt{15}i}{5}-4}{12.8}
Now solve the equation p=\frac{-4±\frac{4\sqrt{15}i}{5}}{12.8} when ± is plus. Add -4 to \frac{4i\sqrt{15}}{5}.
p=\frac{-5+\sqrt{15}i}{16}
Divide -4+\frac{4i\sqrt{15}}{5} by 12.8 by multiplying -4+\frac{4i\sqrt{15}}{5} by the reciprocal of 12.8.
p=\frac{-\frac{4\sqrt{15}i}{5}-4}{12.8}
Now solve the equation p=\frac{-4±\frac{4\sqrt{15}i}{5}}{12.8} when ± is minus. Subtract \frac{4i\sqrt{15}}{5} from -4.
p=\frac{-\sqrt{15}i-5}{16}
Divide -4-\frac{4i\sqrt{15}}{5} by 12.8 by multiplying -4-\frac{4i\sqrt{15}}{5} by the reciprocal of 12.8.
p=\frac{-5+\sqrt{15}i}{16} p=\frac{-\sqrt{15}i-5}{16}
The equation is now solved.
6.4p^{2}+4p+1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
6.4p^{2}+4p+1-1=-1
Subtract 1 from both sides of the equation.
6.4p^{2}+4p=-1
Subtracting 1 from itself leaves 0.
\frac{6.4p^{2}+4p}{6.4}=-\frac{1}{6.4}
Divide both sides of the equation by 6.4, which is the same as multiplying both sides by the reciprocal of the fraction.
p^{2}+\frac{4}{6.4}p=-\frac{1}{6.4}
Dividing by 6.4 undoes the multiplication by 6.4.
p^{2}+0.625p=-\frac{1}{6.4}
Divide 4 by 6.4 by multiplying 4 by the reciprocal of 6.4.
p^{2}+0.625p=-0.15625
Divide -1 by 6.4 by multiplying -1 by the reciprocal of 6.4.
p^{2}+0.625p+0.3125^{2}=-0.15625+0.3125^{2}
Divide 0.625, the coefficient of the x term, by 2 to get 0.3125. Then add the square of 0.3125 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
p^{2}+0.625p+0.09765625=-0.15625+0.09765625
Square 0.3125 by squaring both the numerator and the denominator of the fraction.
p^{2}+0.625p+0.09765625=-0.05859375
Add -0.15625 to 0.09765625 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(p+0.3125\right)^{2}=-0.05859375
Factor p^{2}+0.625p+0.09765625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p+0.3125\right)^{2}}=\sqrt{-0.05859375}
Take the square root of both sides of the equation.
p+0.3125=\frac{\sqrt{15}i}{16} p+0.3125=-\frac{\sqrt{15}i}{16}
Simplify.
p=\frac{-5+\sqrt{15}i}{16} p=\frac{-\sqrt{15}i-5}{16}
Subtract 0.3125 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}