Solve for x
x = \frac{\sqrt{210}}{7} \approx 2.070196678
x = -\frac{\sqrt{210}}{7} \approx -2.070196678
Graph
Share
Copied to clipboard
6.3x^{2}=27
Add 27 to both sides. Anything plus zero gives itself.
x^{2}=\frac{27}{6.3}
Divide both sides by 6.3.
x^{2}=\frac{270}{63}
Expand \frac{27}{6.3} by multiplying both numerator and the denominator by 10.
x^{2}=\frac{30}{7}
Reduce the fraction \frac{270}{63} to lowest terms by extracting and canceling out 9.
x=\frac{\sqrt{210}}{7} x=-\frac{\sqrt{210}}{7}
Take the square root of both sides of the equation.
6.3x^{2}-27=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 6.3\left(-27\right)}}{2\times 6.3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6.3 for a, 0 for b, and -27 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 6.3\left(-27\right)}}{2\times 6.3}
Square 0.
x=\frac{0±\sqrt{-25.2\left(-27\right)}}{2\times 6.3}
Multiply -4 times 6.3.
x=\frac{0±\sqrt{680.4}}{2\times 6.3}
Multiply -25.2 times -27.
x=\frac{0±\frac{9\sqrt{210}}{5}}{2\times 6.3}
Take the square root of 680.4.
x=\frac{0±\frac{9\sqrt{210}}{5}}{12.6}
Multiply 2 times 6.3.
x=\frac{\sqrt{210}}{7}
Now solve the equation x=\frac{0±\frac{9\sqrt{210}}{5}}{12.6} when ± is plus.
x=-\frac{\sqrt{210}}{7}
Now solve the equation x=\frac{0±\frac{9\sqrt{210}}{5}}{12.6} when ± is minus.
x=\frac{\sqrt{210}}{7} x=-\frac{\sqrt{210}}{7}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}