Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

6.3x^{2}=27
Add 27 to both sides. Anything plus zero gives itself.
x^{2}=\frac{27}{6.3}
Divide both sides by 6.3.
x^{2}=\frac{270}{63}
Expand \frac{27}{6.3} by multiplying both numerator and the denominator by 10.
x^{2}=\frac{30}{7}
Reduce the fraction \frac{270}{63} to lowest terms by extracting and canceling out 9.
x=\frac{\sqrt{210}}{7} x=-\frac{\sqrt{210}}{7}
Take the square root of both sides of the equation.
6.3x^{2}-27=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 6.3\left(-27\right)}}{2\times 6.3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6.3 for a, 0 for b, and -27 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 6.3\left(-27\right)}}{2\times 6.3}
Square 0.
x=\frac{0±\sqrt{-25.2\left(-27\right)}}{2\times 6.3}
Multiply -4 times 6.3.
x=\frac{0±\sqrt{680.4}}{2\times 6.3}
Multiply -25.2 times -27.
x=\frac{0±\frac{9\sqrt{210}}{5}}{2\times 6.3}
Take the square root of 680.4.
x=\frac{0±\frac{9\sqrt{210}}{5}}{12.6}
Multiply 2 times 6.3.
x=\frac{\sqrt{210}}{7}
Now solve the equation x=\frac{0±\frac{9\sqrt{210}}{5}}{12.6} when ± is plus.
x=-\frac{\sqrt{210}}{7}
Now solve the equation x=\frac{0±\frac{9\sqrt{210}}{5}}{12.6} when ± is minus.
x=\frac{\sqrt{210}}{7} x=-\frac{\sqrt{210}}{7}
The equation is now solved.