Solve for C
C\neq 0
Solve for g
g\neq 0
Share
Copied to clipboard
6gC\times 1molC=0.5molC\times 12Cg
Variable C cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 12Cg.
6gCmolC=0.5molC\times 12Cg
Multiply 6 and 1 to get 6.
6gC^{2}mol=0.5molC\times 12Cg
Multiply C and C to get C^{2}.
6gC^{2}mol=0.5molC^{2}\times 12g
Multiply C and C to get C^{2}.
6gC^{2}mol=6molC^{2}g
Multiply 0.5 and 12 to get 6.
6gC^{2}mol-6molC^{2}g=0
Subtract 6molC^{2}g from both sides.
0=0
Combine 6gC^{2}mol and -6molC^{2}g to get 0.
\text{true}
Compare 0 and 0.
C\in \mathrm{R}
This is true for any C.
C\in \mathrm{R}\setminus 0
Variable C cannot be equal to 0.
6gC\times 1molC=0.5molC\times 12Cg
Variable g cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 12Cg.
6gCmolC=0.5molC\times 12Cg
Multiply 6 and 1 to get 6.
6gC^{2}mol=0.5molC\times 12Cg
Multiply C and C to get C^{2}.
6gC^{2}mol=0.5molC^{2}\times 12g
Multiply C and C to get C^{2}.
6gC^{2}mol=6molC^{2}g
Multiply 0.5 and 12 to get 6.
6gC^{2}mol-6molC^{2}g=0
Subtract 6molC^{2}g from both sides.
0=0
Combine 6gC^{2}mol and -6molC^{2}g to get 0.
\text{true}
Compare 0 and 0.
g\in \mathrm{R}
This is true for any g.
g\in \mathrm{R}\setminus 0
Variable g cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}