Factor
2\sqrt{3}\left(-\sqrt{1-y^{2}}-y+\sqrt{3}\right)
Evaluate
-2\sqrt{3}y-2\sqrt{3-3y^{2}}+6
Graph
Share
Copied to clipboard
factor(6-2\sqrt{3}y-\frac{6}{\sqrt{3}}\sqrt{1-y^{2}})
Multiply y and y to get y^{2}.
factor(6-2\sqrt{3}y-\frac{6\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\sqrt{1-y^{2}})
Rationalize the denominator of \frac{6}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
factor(6-2\sqrt{3}y-\frac{6\sqrt{3}}{3}\sqrt{1-y^{2}})
The square of \sqrt{3} is 3.
factor(6-2\sqrt{3}y-2\sqrt{3}\sqrt{1-y^{2}})
Divide 6\sqrt{3} by 3 to get 2\sqrt{3}.
2\left(3-\sqrt{3}y-\sqrt{3}\sqrt{1-y^{2}}\right)
Factor out 2.
\sqrt{3}\left(\sqrt{3}-y-\sqrt{1-y^{2}}\right)
Consider 3-\sqrt{3}y-\sqrt{3}\sqrt{1-y^{2}}. Factor out \sqrt{3}.
2\sqrt{3}\left(\sqrt{3}-y-\sqrt{1-y^{2}}\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}