Solve for x
x>\frac{1}{2}
Graph
Share
Copied to clipboard
6-2x-1+4\left(1-x\right)<7-2x
To find the opposite of 2x+1, find the opposite of each term.
5-2x+4\left(1-x\right)<7-2x
Subtract 1 from 6 to get 5.
5-2x+4-4x<7-2x
Use the distributive property to multiply 4 by 1-x.
9-2x-4x<7-2x
Add 5 and 4 to get 9.
9-6x<7-2x
Combine -2x and -4x to get -6x.
9-6x+2x<7
Add 2x to both sides.
9-4x<7
Combine -6x and 2x to get -4x.
-4x<7-9
Subtract 9 from both sides.
-4x<-2
Subtract 9 from 7 to get -2.
x>\frac{-2}{-4}
Divide both sides by -4. Since -4 is negative, the inequality direction is changed.
x>\frac{1}{2}
Reduce the fraction \frac{-2}{-4} to lowest terms by extracting and canceling out -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}