Solve for x
x=-\frac{1}{2}=-0.5
Graph
Share
Copied to clipboard
6-1-\left(-2x\right)+x\left(4-x\right)=1-x\left(2+x\right)
To find the opposite of 1-2x, find the opposite of each term.
6-1+2x+x\left(4-x\right)=1-x\left(2+x\right)
The opposite of -2x is 2x.
5+2x+x\left(4-x\right)=1-x\left(2+x\right)
Subtract 1 from 6 to get 5.
5+2x+4x-x^{2}=1-x\left(2+x\right)
Use the distributive property to multiply x by 4-x.
5+6x-x^{2}=1-x\left(2+x\right)
Combine 2x and 4x to get 6x.
5+6x-x^{2}=1-\left(2x+x^{2}\right)
Use the distributive property to multiply x by 2+x.
5+6x-x^{2}=1-2x-x^{2}
To find the opposite of 2x+x^{2}, find the opposite of each term.
5+6x-x^{2}+2x=1-x^{2}
Add 2x to both sides.
5+8x-x^{2}=1-x^{2}
Combine 6x and 2x to get 8x.
5+8x-x^{2}+x^{2}=1
Add x^{2} to both sides.
5+8x=1
Combine -x^{2} and x^{2} to get 0.
8x=1-5
Subtract 5 from both sides.
8x=-4
Subtract 5 from 1 to get -4.
x=\frac{-4}{8}
Divide both sides by 8.
x=-\frac{1}{2}
Reduce the fraction \frac{-4}{8} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}