Evaluate
4
Factor
2^{2}
Share
Copied to clipboard
\frac{12}{2}-\frac{3}{2}-\left(\frac{11}{12}+\frac{1}{4}\right)-\left(\frac{1}{2}-\frac{7}{6}\right)
Convert 6 to fraction \frac{12}{2}.
\frac{12-3}{2}-\left(\frac{11}{12}+\frac{1}{4}\right)-\left(\frac{1}{2}-\frac{7}{6}\right)
Since \frac{12}{2} and \frac{3}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{9}{2}-\left(\frac{11}{12}+\frac{1}{4}\right)-\left(\frac{1}{2}-\frac{7}{6}\right)
Subtract 3 from 12 to get 9.
\frac{9}{2}-\left(\frac{11}{12}+\frac{3}{12}\right)-\left(\frac{1}{2}-\frac{7}{6}\right)
Least common multiple of 12 and 4 is 12. Convert \frac{11}{12} and \frac{1}{4} to fractions with denominator 12.
\frac{9}{2}-\frac{11+3}{12}-\left(\frac{1}{2}-\frac{7}{6}\right)
Since \frac{11}{12} and \frac{3}{12} have the same denominator, add them by adding their numerators.
\frac{9}{2}-\frac{14}{12}-\left(\frac{1}{2}-\frac{7}{6}\right)
Add 11 and 3 to get 14.
\frac{9}{2}-\frac{7}{6}-\left(\frac{1}{2}-\frac{7}{6}\right)
Reduce the fraction \frac{14}{12} to lowest terms by extracting and canceling out 2.
\frac{27}{6}-\frac{7}{6}-\left(\frac{1}{2}-\frac{7}{6}\right)
Least common multiple of 2 and 6 is 6. Convert \frac{9}{2} and \frac{7}{6} to fractions with denominator 6.
\frac{27-7}{6}-\left(\frac{1}{2}-\frac{7}{6}\right)
Since \frac{27}{6} and \frac{7}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{20}{6}-\left(\frac{1}{2}-\frac{7}{6}\right)
Subtract 7 from 27 to get 20.
\frac{10}{3}-\left(\frac{1}{2}-\frac{7}{6}\right)
Reduce the fraction \frac{20}{6} to lowest terms by extracting and canceling out 2.
\frac{10}{3}-\left(\frac{3}{6}-\frac{7}{6}\right)
Least common multiple of 2 and 6 is 6. Convert \frac{1}{2} and \frac{7}{6} to fractions with denominator 6.
\frac{10}{3}-\frac{3-7}{6}
Since \frac{3}{6} and \frac{7}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{10}{3}-\frac{-4}{6}
Subtract 7 from 3 to get -4.
\frac{10}{3}-\left(-\frac{2}{3}\right)
Reduce the fraction \frac{-4}{6} to lowest terms by extracting and canceling out 2.
\frac{10}{3}+\frac{2}{3}
The opposite of -\frac{2}{3} is \frac{2}{3}.
\frac{10+2}{3}
Since \frac{10}{3} and \frac{2}{3} have the same denominator, add them by adding their numerators.
\frac{12}{3}
Add 10 and 2 to get 12.
4
Divide 12 by 3 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}