Solve for x
\left\{\begin{matrix}x=-\frac{yz-36}{6-y}\text{, }&y\neq 6\\x\in \mathrm{R}\text{, }&z=6\text{ and }y=6\end{matrix}\right.
Solve for y
\left\{\begin{matrix}y=\frac{6\left(x-6\right)}{x-z}\text{, }&x\neq z\\y\in \mathrm{R}\text{, }&x=6\text{ and }z=6\end{matrix}\right.
Share
Copied to clipboard
6x-36=y\left(x-z\right)
Use the distributive property to multiply 6 by x-6.
6x-36=yx-yz
Use the distributive property to multiply y by x-z.
6x-36-yx=-yz
Subtract yx from both sides.
6x-yx=-yz+36
Add 36 to both sides.
\left(6-y\right)x=-yz+36
Combine all terms containing x.
\left(6-y\right)x=36-yz
The equation is in standard form.
\frac{\left(6-y\right)x}{6-y}=\frac{36-yz}{6-y}
Divide both sides by -y+6.
x=\frac{36-yz}{6-y}
Dividing by -y+6 undoes the multiplication by -y+6.
6x-36=y\left(x-z\right)
Use the distributive property to multiply 6 by x-6.
6x-36=yx-yz
Use the distributive property to multiply y by x-z.
yx-yz=6x-36
Swap sides so that all variable terms are on the left hand side.
\left(x-z\right)y=6x-36
Combine all terms containing y.
\frac{\left(x-z\right)y}{x-z}=\frac{6x-36}{x-z}
Divide both sides by x-z.
y=\frac{6x-36}{x-z}
Dividing by x-z undoes the multiplication by x-z.
y=\frac{6\left(x-6\right)}{x-z}
Divide -36+6x by x-z.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}