Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

810=\left(x-2\times \frac{1}{2}\right)^{2}
Multiply 6 and 135 to get 810.
810=\left(x-1\right)^{2}
Multiply 2 and \frac{1}{2} to get 1.
810=x^{2}-2x+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x^{2}-2x+1=810
Swap sides so that all variable terms are on the left hand side.
x^{2}-2x+1-810=0
Subtract 810 from both sides.
x^{2}-2x-809=0
Subtract 810 from 1 to get -809.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-809\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -2 for b, and -809 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-809\right)}}{2}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+3236}}{2}
Multiply -4 times -809.
x=\frac{-\left(-2\right)±\sqrt{3240}}{2}
Add 4 to 3236.
x=\frac{-\left(-2\right)±18\sqrt{10}}{2}
Take the square root of 3240.
x=\frac{2±18\sqrt{10}}{2}
The opposite of -2 is 2.
x=\frac{18\sqrt{10}+2}{2}
Now solve the equation x=\frac{2±18\sqrt{10}}{2} when ± is plus. Add 2 to 18\sqrt{10}.
x=9\sqrt{10}+1
Divide 2+18\sqrt{10} by 2.
x=\frac{2-18\sqrt{10}}{2}
Now solve the equation x=\frac{2±18\sqrt{10}}{2} when ± is minus. Subtract 18\sqrt{10} from 2.
x=1-9\sqrt{10}
Divide 2-18\sqrt{10} by 2.
x=9\sqrt{10}+1 x=1-9\sqrt{10}
The equation is now solved.
810=\left(x-2\times \frac{1}{2}\right)^{2}
Multiply 6 and 135 to get 810.
810=\left(x-1\right)^{2}
Multiply 2 and \frac{1}{2} to get 1.
810=x^{2}-2x+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x^{2}-2x+1=810
Swap sides so that all variable terms are on the left hand side.
\left(x-1\right)^{2}=810
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{810}
Take the square root of both sides of the equation.
x-1=9\sqrt{10} x-1=-9\sqrt{10}
Simplify.
x=9\sqrt{10}+1 x=1-9\sqrt{10}
Add 1 to both sides of the equation.