Solve for x
x=\frac{2\left(y-9\right)}{5}
Solve for y
y=\frac{5x}{2}+9
Graph
Share
Copied to clipboard
\frac{5}{6}x-\frac{1}{3}y=-3
Cancel out 6 on both sides.
\frac{5}{6}x=-3+\frac{1}{3}y
Add \frac{1}{3}y to both sides.
\frac{5}{6}x=\frac{y}{3}-3
The equation is in standard form.
\frac{\frac{5}{6}x}{\frac{5}{6}}=\frac{\frac{y}{3}-3}{\frac{5}{6}}
Divide both sides of the equation by \frac{5}{6}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{\frac{y}{3}-3}{\frac{5}{6}}
Dividing by \frac{5}{6} undoes the multiplication by \frac{5}{6}.
x=\frac{2y-18}{5}
Divide -3+\frac{y}{3} by \frac{5}{6} by multiplying -3+\frac{y}{3} by the reciprocal of \frac{5}{6}.
\frac{5}{6}x-\frac{1}{3}y=-3
Cancel out 6 on both sides.
-\frac{1}{3}y=-3-\frac{5}{6}x
Subtract \frac{5}{6}x from both sides.
-\frac{1}{3}y=-\frac{5x}{6}-3
The equation is in standard form.
\frac{-\frac{1}{3}y}{-\frac{1}{3}}=\frac{-\frac{5x}{6}-3}{-\frac{1}{3}}
Multiply both sides by -3.
y=\frac{-\frac{5x}{6}-3}{-\frac{1}{3}}
Dividing by -\frac{1}{3} undoes the multiplication by -\frac{1}{3}.
y=\frac{5x}{2}+9
Divide -3-\frac{5x}{6} by -\frac{1}{3} by multiplying -3-\frac{5x}{6} by the reciprocal of -\frac{1}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}