Evaluate
\frac{240000}{73}\approx 3287.671232877
Factor
\frac{2 ^ {7} \cdot 3 \cdot 5 ^ {4}}{73} = 3287\frac{49}{73} = 3287.671232876712
Share
Copied to clipboard
\begin{array}{l}\phantom{1825)}\phantom{1}\\1825\overline{)6000000}\\\end{array}
Use the 1^{st} digit 6 from dividend 6000000
\begin{array}{l}\phantom{1825)}0\phantom{2}\\1825\overline{)6000000}\\\end{array}
Since 6 is less than 1825, use the next digit 0 from dividend 6000000 and add 0 to the quotient
\begin{array}{l}\phantom{1825)}0\phantom{3}\\1825\overline{)6000000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 6000000
\begin{array}{l}\phantom{1825)}00\phantom{4}\\1825\overline{)6000000}\\\end{array}
Since 60 is less than 1825, use the next digit 0 from dividend 6000000 and add 0 to the quotient
\begin{array}{l}\phantom{1825)}00\phantom{5}\\1825\overline{)6000000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 6000000
\begin{array}{l}\phantom{1825)}000\phantom{6}\\1825\overline{)6000000}\\\end{array}
Since 600 is less than 1825, use the next digit 0 from dividend 6000000 and add 0 to the quotient
\begin{array}{l}\phantom{1825)}000\phantom{7}\\1825\overline{)6000000}\\\end{array}
Use the 4^{th} digit 0 from dividend 6000000
\begin{array}{l}\phantom{1825)}0003\phantom{8}\\1825\overline{)6000000}\\\phantom{1825)}\underline{\phantom{}5475\phantom{999}}\\\phantom{1825)9}525\\\end{array}
Find closest multiple of 1825 to 6000. We see that 3 \times 1825 = 5475 is the nearest. Now subtract 5475 from 6000 to get reminder 525. Add 3 to quotient.
\begin{array}{l}\phantom{1825)}0003\phantom{9}\\1825\overline{)6000000}\\\phantom{1825)}\underline{\phantom{}5475\phantom{999}}\\\phantom{1825)9}5250\\\end{array}
Use the 5^{th} digit 0 from dividend 6000000
\begin{array}{l}\phantom{1825)}00032\phantom{10}\\1825\overline{)6000000}\\\phantom{1825)}\underline{\phantom{}5475\phantom{999}}\\\phantom{1825)9}5250\\\phantom{1825)}\underline{\phantom{9}3650\phantom{99}}\\\phantom{1825)9}1600\\\end{array}
Find closest multiple of 1825 to 5250. We see that 2 \times 1825 = 3650 is the nearest. Now subtract 3650 from 5250 to get reminder 1600. Add 2 to quotient.
\begin{array}{l}\phantom{1825)}00032\phantom{11}\\1825\overline{)6000000}\\\phantom{1825)}\underline{\phantom{}5475\phantom{999}}\\\phantom{1825)9}5250\\\phantom{1825)}\underline{\phantom{9}3650\phantom{99}}\\\phantom{1825)9}16000\\\end{array}
Use the 6^{th} digit 0 from dividend 6000000
\begin{array}{l}\phantom{1825)}000328\phantom{12}\\1825\overline{)6000000}\\\phantom{1825)}\underline{\phantom{}5475\phantom{999}}\\\phantom{1825)9}5250\\\phantom{1825)}\underline{\phantom{9}3650\phantom{99}}\\\phantom{1825)9}16000\\\phantom{1825)}\underline{\phantom{9}14600\phantom{9}}\\\phantom{1825)99}1400\\\end{array}
Find closest multiple of 1825 to 16000. We see that 8 \times 1825 = 14600 is the nearest. Now subtract 14600 from 16000 to get reminder 1400. Add 8 to quotient.
\begin{array}{l}\phantom{1825)}000328\phantom{13}\\1825\overline{)6000000}\\\phantom{1825)}\underline{\phantom{}5475\phantom{999}}\\\phantom{1825)9}5250\\\phantom{1825)}\underline{\phantom{9}3650\phantom{99}}\\\phantom{1825)9}16000\\\phantom{1825)}\underline{\phantom{9}14600\phantom{9}}\\\phantom{1825)99}14000\\\end{array}
Use the 7^{th} digit 0 from dividend 6000000
\begin{array}{l}\phantom{1825)}0003287\phantom{14}\\1825\overline{)6000000}\\\phantom{1825)}\underline{\phantom{}5475\phantom{999}}\\\phantom{1825)9}5250\\\phantom{1825)}\underline{\phantom{9}3650\phantom{99}}\\\phantom{1825)9}16000\\\phantom{1825)}\underline{\phantom{9}14600\phantom{9}}\\\phantom{1825)99}14000\\\phantom{1825)}\underline{\phantom{99}12775\phantom{}}\\\phantom{1825)999}1225\\\end{array}
Find closest multiple of 1825 to 14000. We see that 7 \times 1825 = 12775 is the nearest. Now subtract 12775 from 14000 to get reminder 1225. Add 7 to quotient.
\text{Quotient: }3287 \text{Reminder: }1225
Since 1225 is less than 1825, stop the division. The reminder is 1225. The topmost line 0003287 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3287.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}