Factor
6\left(z-3\right)\left(z-1\right)z^{2}
Evaluate
6\left(z-3\right)\left(z-1\right)z^{2}
Share
Copied to clipboard
6\left(z^{4}-4z^{3}+3z^{2}\right)
Factor out 6.
z^{2}\left(z^{2}-4z+3\right)
Consider z^{4}-4z^{3}+3z^{2}. Factor out z^{2}.
a+b=-4 ab=1\times 3=3
Consider z^{2}-4z+3. Factor the expression by grouping. First, the expression needs to be rewritten as z^{2}+az+bz+3. To find a and b, set up a system to be solved.
a=-3 b=-1
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. The only such pair is the system solution.
\left(z^{2}-3z\right)+\left(-z+3\right)
Rewrite z^{2}-4z+3 as \left(z^{2}-3z\right)+\left(-z+3\right).
z\left(z-3\right)-\left(z-3\right)
Factor out z in the first and -1 in the second group.
\left(z-3\right)\left(z-1\right)
Factor out common term z-3 by using distributive property.
6z^{2}\left(z-3\right)\left(z-1\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}