Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(3y-y^{2}\right)
Factor out 2.
y\left(3-y\right)
Consider 3y-y^{2}. Factor out y.
2y\left(-y+3\right)
Rewrite the complete factored expression.
-2y^{2}+6y=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-6±\sqrt{6^{2}}}{2\left(-2\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-6±6}{2\left(-2\right)}
Take the square root of 6^{2}.
y=\frac{-6±6}{-4}
Multiply 2 times -2.
y=\frac{0}{-4}
Now solve the equation y=\frac{-6±6}{-4} when ± is plus. Add -6 to 6.
y=0
Divide 0 by -4.
y=-\frac{12}{-4}
Now solve the equation y=\frac{-6±6}{-4} when ± is minus. Subtract 6 from -6.
y=3
Divide -12 by -4.
-2y^{2}+6y=-2y\left(y-3\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and 3 for x_{2}.