Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. y
Tick mark Image
Graph

Similar Problems from Web Search

Share

6y-2+\frac{y}{\left(3y-1\right)\left(3y+1\right)}
Factor 9y^{2}-1.
\frac{\left(6y-2\right)\left(3y-1\right)\left(3y+1\right)}{\left(3y-1\right)\left(3y+1\right)}+\frac{y}{\left(3y-1\right)\left(3y+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 6y-2 times \frac{\left(3y-1\right)\left(3y+1\right)}{\left(3y-1\right)\left(3y+1\right)}.
\frac{\left(6y-2\right)\left(3y-1\right)\left(3y+1\right)+y}{\left(3y-1\right)\left(3y+1\right)}
Since \frac{\left(6y-2\right)\left(3y-1\right)\left(3y+1\right)}{\left(3y-1\right)\left(3y+1\right)} and \frac{y}{\left(3y-1\right)\left(3y+1\right)} have the same denominator, add them by adding their numerators.
\frac{54y^{3}-6y-18y^{2}+2+y}{\left(3y-1\right)\left(3y+1\right)}
Do the multiplications in \left(6y-2\right)\left(3y-1\right)\left(3y+1\right)+y.
\frac{54y^{3}-5y-18y^{2}+2}{\left(3y-1\right)\left(3y+1\right)}
Combine like terms in 54y^{3}-6y-18y^{2}+2+y.
\frac{54y^{3}-5y-18y^{2}+2}{9y^{2}-1}
Expand \left(3y-1\right)\left(3y+1\right).