Solve for y
y=\frac{1}{2}=0.5
y=-\frac{2}{3}\approx -0.666666667
y=-2
Graph
Share
Copied to clipboard
6y^{3}-4=-13y^{2}
Subtract 4 from both sides.
6y^{3}-4+13y^{2}=0
Add 13y^{2} to both sides.
6y^{3}+13y^{2}-4=0
Rearrange the equation to put it in standard form. Place the terms in order from highest to lowest power.
±\frac{2}{3},±\frac{4}{3},±2,±4,±\frac{1}{3},±1,±\frac{1}{6},±\frac{1}{2}
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -4 and q divides the leading coefficient 6. List all candidates \frac{p}{q}.
y=-2
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
6y^{2}+y-2=0
By Factor theorem, y-k is a factor of the polynomial for each root k. Divide 6y^{3}+13y^{2}-4 by y+2 to get 6y^{2}+y-2. Solve the equation where the result equals to 0.
y=\frac{-1±\sqrt{1^{2}-4\times 6\left(-2\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 6 for a, 1 for b, and -2 for c in the quadratic formula.
y=\frac{-1±7}{12}
Do the calculations.
y=-\frac{2}{3} y=\frac{1}{2}
Solve the equation 6y^{2}+y-2=0 when ± is plus and when ± is minus.
y=-2 y=-\frac{2}{3} y=\frac{1}{2}
List all found solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}