Factor
3y\left(2y-3\right)\left(y+2\right)
Evaluate
3y\left(2y-3\right)\left(y+2\right)
Graph
Share
Copied to clipboard
3\left(2y^{3}+y^{2}-6y\right)
Factor out 3.
y\left(2y^{2}+y-6\right)
Consider 2y^{3}+y^{2}-6y. Factor out y.
a+b=1 ab=2\left(-6\right)=-12
Consider 2y^{2}+y-6. Factor the expression by grouping. First, the expression needs to be rewritten as 2y^{2}+ay+by-6. To find a and b, set up a system to be solved.
-1,12 -2,6 -3,4
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -12.
-1+12=11 -2+6=4 -3+4=1
Calculate the sum for each pair.
a=-3 b=4
The solution is the pair that gives sum 1.
\left(2y^{2}-3y\right)+\left(4y-6\right)
Rewrite 2y^{2}+y-6 as \left(2y^{2}-3y\right)+\left(4y-6\right).
y\left(2y-3\right)+2\left(2y-3\right)
Factor out y in the first and 2 in the second group.
\left(2y-3\right)\left(y+2\right)
Factor out common term 2y-3 by using distributive property.
3y\left(2y-3\right)\left(y+2\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}