Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

6\left(y^{2}-4y\right)
Factor out 6.
y\left(y-4\right)
Consider y^{2}-4y. Factor out y.
6y\left(y-4\right)
Rewrite the complete factored expression.
6y^{2}-24y=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-24\right)±24}{2\times 6}
Take the square root of \left(-24\right)^{2}.
y=\frac{24±24}{2\times 6}
The opposite of -24 is 24.
y=\frac{24±24}{12}
Multiply 2 times 6.
y=\frac{48}{12}
Now solve the equation y=\frac{24±24}{12} when ± is plus. Add 24 to 24.
y=4
Divide 48 by 12.
y=\frac{0}{12}
Now solve the equation y=\frac{24±24}{12} when ± is minus. Subtract 24 from 24.
y=0
Divide 0 by 12.
6y^{2}-24y=6\left(y-4\right)y
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 4 for x_{1} and 0 for x_{2}.