Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

6y^{2}=30+2
Add 2 to both sides.
6y^{2}=32
Add 30 and 2 to get 32.
y^{2}=\frac{32}{6}
Divide both sides by 6.
y^{2}=\frac{16}{3}
Reduce the fraction \frac{32}{6} to lowest terms by extracting and canceling out 2.
y=\frac{4\sqrt{3}}{3} y=-\frac{4\sqrt{3}}{3}
Take the square root of both sides of the equation.
6y^{2}-2-30=0
Subtract 30 from both sides.
6y^{2}-32=0
Subtract 30 from -2 to get -32.
y=\frac{0±\sqrt{0^{2}-4\times 6\left(-32\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 0 for b, and -32 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times 6\left(-32\right)}}{2\times 6}
Square 0.
y=\frac{0±\sqrt{-24\left(-32\right)}}{2\times 6}
Multiply -4 times 6.
y=\frac{0±\sqrt{768}}{2\times 6}
Multiply -24 times -32.
y=\frac{0±16\sqrt{3}}{2\times 6}
Take the square root of 768.
y=\frac{0±16\sqrt{3}}{12}
Multiply 2 times 6.
y=\frac{4\sqrt{3}}{3}
Now solve the equation y=\frac{0±16\sqrt{3}}{12} when ± is plus.
y=-\frac{4\sqrt{3}}{3}
Now solve the equation y=\frac{0±16\sqrt{3}}{12} when ± is minus.
y=\frac{4\sqrt{3}}{3} y=-\frac{4\sqrt{3}}{3}
The equation is now solved.