Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

3y^{2}+8y+7y-9
Combine 6y^{2} and -3y^{2} to get 3y^{2}.
3y^{2}+15y-9
Combine 8y and 7y to get 15y.
factor(3y^{2}+8y+7y-9)
Combine 6y^{2} and -3y^{2} to get 3y^{2}.
factor(3y^{2}+15y-9)
Combine 8y and 7y to get 15y.
3y^{2}+15y-9=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-15±\sqrt{15^{2}-4\times 3\left(-9\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-15±\sqrt{225-4\times 3\left(-9\right)}}{2\times 3}
Square 15.
y=\frac{-15±\sqrt{225-12\left(-9\right)}}{2\times 3}
Multiply -4 times 3.
y=\frac{-15±\sqrt{225+108}}{2\times 3}
Multiply -12 times -9.
y=\frac{-15±\sqrt{333}}{2\times 3}
Add 225 to 108.
y=\frac{-15±3\sqrt{37}}{2\times 3}
Take the square root of 333.
y=\frac{-15±3\sqrt{37}}{6}
Multiply 2 times 3.
y=\frac{3\sqrt{37}-15}{6}
Now solve the equation y=\frac{-15±3\sqrt{37}}{6} when ± is plus. Add -15 to 3\sqrt{37}.
y=\frac{\sqrt{37}-5}{2}
Divide -15+3\sqrt{37} by 6.
y=\frac{-3\sqrt{37}-15}{6}
Now solve the equation y=\frac{-15±3\sqrt{37}}{6} when ± is minus. Subtract 3\sqrt{37} from -15.
y=\frac{-\sqrt{37}-5}{2}
Divide -15-3\sqrt{37} by 6.
3y^{2}+15y-9=3\left(y-\frac{\sqrt{37}-5}{2}\right)\left(y-\frac{-\sqrt{37}-5}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-5+\sqrt{37}}{2} for x_{1} and \frac{-5-\sqrt{37}}{2} for x_{2}.