Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

6y^{2}+22y+5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-22±\sqrt{22^{2}-4\times 6\times 5}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-22±\sqrt{484-4\times 6\times 5}}{2\times 6}
Square 22.
y=\frac{-22±\sqrt{484-24\times 5}}{2\times 6}
Multiply -4 times 6.
y=\frac{-22±\sqrt{484-120}}{2\times 6}
Multiply -24 times 5.
y=\frac{-22±\sqrt{364}}{2\times 6}
Add 484 to -120.
y=\frac{-22±2\sqrt{91}}{2\times 6}
Take the square root of 364.
y=\frac{-22±2\sqrt{91}}{12}
Multiply 2 times 6.
y=\frac{2\sqrt{91}-22}{12}
Now solve the equation y=\frac{-22±2\sqrt{91}}{12} when ± is plus. Add -22 to 2\sqrt{91}.
y=\frac{\sqrt{91}-11}{6}
Divide -22+2\sqrt{91} by 12.
y=\frac{-2\sqrt{91}-22}{12}
Now solve the equation y=\frac{-22±2\sqrt{91}}{12} when ± is minus. Subtract 2\sqrt{91} from -22.
y=\frac{-\sqrt{91}-11}{6}
Divide -22-2\sqrt{91} by 12.
6y^{2}+22y+5=6\left(y-\frac{\sqrt{91}-11}{6}\right)\left(y-\frac{-\sqrt{91}-11}{6}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-11+\sqrt{91}}{6} for x_{1} and \frac{-11-\sqrt{91}}{6} for x_{2}.
x ^ 2 +\frac{11}{3}x +\frac{5}{6} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 6
r + s = -\frac{11}{3} rs = \frac{5}{6}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{11}{6} - u s = -\frac{11}{6} + u
Two numbers r and s sum up to -\frac{11}{3} exactly when the average of the two numbers is \frac{1}{2}*-\frac{11}{3} = -\frac{11}{6}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{11}{6} - u) (-\frac{11}{6} + u) = \frac{5}{6}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{5}{6}
\frac{121}{36} - u^2 = \frac{5}{6}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{5}{6}-\frac{121}{36} = -\frac{91}{36}
Simplify the expression by subtracting \frac{121}{36} on both sides
u^2 = \frac{91}{36} u = \pm\sqrt{\frac{91}{36}} = \pm \frac{\sqrt{91}}{6}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{11}{6} - \frac{\sqrt{91}}{6} = -3.423 s = -\frac{11}{6} + \frac{\sqrt{91}}{6} = -0.243
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.