Factor
3\left(y-1\right)\left(3y+5\right)
Evaluate
3\left(y-1\right)\left(3y+5\right)
Graph
Share
Copied to clipboard
3\left(2y+3y^{2}-5\right)
Factor out 3.
3y^{2}+2y-5
Consider 2y+3y^{2}-5. Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=2 ab=3\left(-5\right)=-15
Factor the expression by grouping. First, the expression needs to be rewritten as 3y^{2}+ay+by-5. To find a and b, set up a system to be solved.
-1,15 -3,5
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -15.
-1+15=14 -3+5=2
Calculate the sum for each pair.
a=-3 b=5
The solution is the pair that gives sum 2.
\left(3y^{2}-3y\right)+\left(5y-5\right)
Rewrite 3y^{2}+2y-5 as \left(3y^{2}-3y\right)+\left(5y-5\right).
3y\left(y-1\right)+5\left(y-1\right)
Factor out 3y in the first and 5 in the second group.
\left(y-1\right)\left(3y+5\right)
Factor out common term y-1 by using distributive property.
3\left(y-1\right)\left(3y+5\right)
Rewrite the complete factored expression.
9y^{2}+6y-15=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-6±\sqrt{6^{2}-4\times 9\left(-15\right)}}{2\times 9}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-6±\sqrt{36-4\times 9\left(-15\right)}}{2\times 9}
Square 6.
y=\frac{-6±\sqrt{36-36\left(-15\right)}}{2\times 9}
Multiply -4 times 9.
y=\frac{-6±\sqrt{36+540}}{2\times 9}
Multiply -36 times -15.
y=\frac{-6±\sqrt{576}}{2\times 9}
Add 36 to 540.
y=\frac{-6±24}{2\times 9}
Take the square root of 576.
y=\frac{-6±24}{18}
Multiply 2 times 9.
y=\frac{18}{18}
Now solve the equation y=\frac{-6±24}{18} when ± is plus. Add -6 to 24.
y=1
Divide 18 by 18.
y=-\frac{30}{18}
Now solve the equation y=\frac{-6±24}{18} when ± is minus. Subtract 24 from -6.
y=-\frac{5}{3}
Reduce the fraction \frac{-30}{18} to lowest terms by extracting and canceling out 6.
9y^{2}+6y-15=9\left(y-1\right)\left(y-\left(-\frac{5}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 1 for x_{1} and -\frac{5}{3} for x_{2}.
9y^{2}+6y-15=9\left(y-1\right)\left(y+\frac{5}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
9y^{2}+6y-15=9\left(y-1\right)\times \frac{3y+5}{3}
Add \frac{5}{3} to y by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
9y^{2}+6y-15=3\left(y-1\right)\left(3y+5\right)
Cancel out 3, the greatest common factor in 9 and 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}