Solve for x
x=-\frac{10y-303}{3\left(2y-3\right)}
y\neq \frac{3}{2}
Solve for y
y=\frac{3\left(3x+101\right)}{2\left(3x+5\right)}
x\neq -\frac{5}{3}
Graph
Share
Copied to clipboard
6xy-9x=-10y+303
Subtract 9x from both sides.
\left(6y-9\right)x=-10y+303
Combine all terms containing x.
\left(6y-9\right)x=303-10y
The equation is in standard form.
\frac{\left(6y-9\right)x}{6y-9}=\frac{303-10y}{6y-9}
Divide both sides by 6y-9.
x=\frac{303-10y}{6y-9}
Dividing by 6y-9 undoes the multiplication by 6y-9.
x=\frac{303-10y}{3\left(2y-3\right)}
Divide -10y+303 by 6y-9.
6xy+10y=9x+303
Add 10y to both sides.
\left(6x+10\right)y=9x+303
Combine all terms containing y.
\frac{\left(6x+10\right)y}{6x+10}=\frac{9x+303}{6x+10}
Divide both sides by 6x+10.
y=\frac{9x+303}{6x+10}
Dividing by 6x+10 undoes the multiplication by 6x+10.
y=\frac{3\left(3x+101\right)}{2\left(3x+5\right)}
Divide 9x+303 by 6x+10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}