Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}+6x=4
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-x^{2}+6x-4=4-4
Subtract 4 from both sides of the equation.
-x^{2}+6x-4=0
Subtracting 4 from itself leaves 0.
x=\frac{-6±\sqrt{6^{2}-4\left(-1\right)\left(-4\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 6 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-1\right)\left(-4\right)}}{2\left(-1\right)}
Square 6.
x=\frac{-6±\sqrt{36+4\left(-4\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-6±\sqrt{36-16}}{2\left(-1\right)}
Multiply 4 times -4.
x=\frac{-6±\sqrt{20}}{2\left(-1\right)}
Add 36 to -16.
x=\frac{-6±2\sqrt{5}}{2\left(-1\right)}
Take the square root of 20.
x=\frac{-6±2\sqrt{5}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{5}-6}{-2}
Now solve the equation x=\frac{-6±2\sqrt{5}}{-2} when ± is plus. Add -6 to 2\sqrt{5}.
x=3-\sqrt{5}
Divide -6+2\sqrt{5} by -2.
x=\frac{-2\sqrt{5}-6}{-2}
Now solve the equation x=\frac{-6±2\sqrt{5}}{-2} when ± is minus. Subtract 2\sqrt{5} from -6.
x=\sqrt{5}+3
Divide -6-2\sqrt{5} by -2.
x=3-\sqrt{5} x=\sqrt{5}+3
The equation is now solved.
-x^{2}+6x=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+6x}{-1}=\frac{4}{-1}
Divide both sides by -1.
x^{2}+\frac{6}{-1}x=\frac{4}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-6x=\frac{4}{-1}
Divide 6 by -1.
x^{2}-6x=-4
Divide 4 by -1.
x^{2}-6x+\left(-3\right)^{2}=-4+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=-4+9
Square -3.
x^{2}-6x+9=5
Add -4 to 9.
\left(x-3\right)^{2}=5
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{5}
Take the square root of both sides of the equation.
x-3=\sqrt{5} x-3=-\sqrt{5}
Simplify.
x=\sqrt{5}+3 x=3-\sqrt{5}
Add 3 to both sides of the equation.