Solve for x
x = \frac{9}{4} = 2\frac{1}{4} = 2.25
Graph
Share
Copied to clipboard
6x-7\sqrt{x}=3
Add 3 to both sides. Anything plus zero gives itself.
-7\sqrt{x}=3-6x
Subtract 6x from both sides of the equation.
\left(-7\sqrt{x}\right)^{2}=\left(3-6x\right)^{2}
Square both sides of the equation.
\left(-7\right)^{2}\left(\sqrt{x}\right)^{2}=\left(3-6x\right)^{2}
Expand \left(-7\sqrt{x}\right)^{2}.
49\left(\sqrt{x}\right)^{2}=\left(3-6x\right)^{2}
Calculate -7 to the power of 2 and get 49.
49x=\left(3-6x\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
49x=9-36x+36x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-6x\right)^{2}.
49x+36x=9+36x^{2}
Add 36x to both sides.
85x=9+36x^{2}
Combine 49x and 36x to get 85x.
85x-36x^{2}=9
Subtract 36x^{2} from both sides.
85x-36x^{2}-9=0
Subtract 9 from both sides.
-36x^{2}+85x-9=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=85 ab=-36\left(-9\right)=324
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -36x^{2}+ax+bx-9. To find a and b, set up a system to be solved.
1,324 2,162 3,108 4,81 6,54 9,36 12,27 18,18
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 324.
1+324=325 2+162=164 3+108=111 4+81=85 6+54=60 9+36=45 12+27=39 18+18=36
Calculate the sum for each pair.
a=81 b=4
The solution is the pair that gives sum 85.
\left(-36x^{2}+81x\right)+\left(4x-9\right)
Rewrite -36x^{2}+85x-9 as \left(-36x^{2}+81x\right)+\left(4x-9\right).
-9x\left(4x-9\right)+4x-9
Factor out -9x in -36x^{2}+81x.
\left(4x-9\right)\left(-9x+1\right)
Factor out common term 4x-9 by using distributive property.
x=\frac{9}{4} x=\frac{1}{9}
To find equation solutions, solve 4x-9=0 and -9x+1=0.
6\times \frac{9}{4}-7\sqrt{\frac{9}{4}}-3=0
Substitute \frac{9}{4} for x in the equation 6x-7\sqrt{x}-3=0.
0=0
Simplify. The value x=\frac{9}{4} satisfies the equation.
6\times \frac{1}{9}-7\sqrt{\frac{1}{9}}-3=0
Substitute \frac{1}{9} for x in the equation 6x-7\sqrt{x}-3=0.
-\frac{14}{3}=0
Simplify. The value x=\frac{1}{9} does not satisfy the equation.
x=\frac{9}{4}
Equation -7\sqrt{x}=3-6x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}