Solve for x
x=\frac{11}{42}\approx 0.261904762
Graph
Share
Copied to clipboard
6x-3+16-32x=16x+2
Use the distributive property to multiply 8 by 2-4x.
6x+13-32x=16x+2
Add -3 and 16 to get 13.
-26x+13=16x+2
Combine 6x and -32x to get -26x.
-26x+13-16x=2
Subtract 16x from both sides.
-42x+13=2
Combine -26x and -16x to get -42x.
-42x=2-13
Subtract 13 from both sides.
-42x=-11
Subtract 13 from 2 to get -11.
x=\frac{-11}{-42}
Divide both sides by -42.
x=\frac{11}{42}
Fraction \frac{-11}{-42} can be simplified to \frac{11}{42} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}