Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x-2>3\times \frac{1}{2}x+3\left(-\frac{3}{2}\right)
Use the distributive property to multiply 3 by \frac{1}{2}x-\frac{3}{2}.
6x-2>\frac{3}{2}x+3\left(-\frac{3}{2}\right)
Multiply 3 and \frac{1}{2} to get \frac{3}{2}.
6x-2>\frac{3}{2}x+\frac{3\left(-3\right)}{2}
Express 3\left(-\frac{3}{2}\right) as a single fraction.
6x-2>\frac{3}{2}x+\frac{-9}{2}
Multiply 3 and -3 to get -9.
6x-2>\frac{3}{2}x-\frac{9}{2}
Fraction \frac{-9}{2} can be rewritten as -\frac{9}{2} by extracting the negative sign.
6x-2-\frac{3}{2}x>-\frac{9}{2}
Subtract \frac{3}{2}x from both sides.
\frac{9}{2}x-2>-\frac{9}{2}
Combine 6x and -\frac{3}{2}x to get \frac{9}{2}x.
\frac{9}{2}x>-\frac{9}{2}+2
Add 2 to both sides.
\frac{9}{2}x>-\frac{9}{2}+\frac{4}{2}
Convert 2 to fraction \frac{4}{2}.
\frac{9}{2}x>\frac{-9+4}{2}
Since -\frac{9}{2} and \frac{4}{2} have the same denominator, add them by adding their numerators.
\frac{9}{2}x>-\frac{5}{2}
Add -9 and 4 to get -5.
x>-\frac{5}{2}\times \frac{2}{9}
Multiply both sides by \frac{2}{9}, the reciprocal of \frac{9}{2}. Since \frac{9}{2} is positive, the inequality direction remains the same.
x>\frac{-5\times 2}{2\times 9}
Multiply -\frac{5}{2} times \frac{2}{9} by multiplying numerator times numerator and denominator times denominator.
x>\frac{-5}{9}
Cancel out 2 in both numerator and denominator.
x>-\frac{5}{9}
Fraction \frac{-5}{9} can be rewritten as -\frac{5}{9} by extracting the negative sign.