Solve for x
x=\frac{2}{3}\approx 0.666666667
x=\frac{1}{2}=0.5
Graph
Share
Copied to clipboard
-\sqrt{18x-8}=2-6x
Subtract 6x from both sides of the equation.
\left(-\sqrt{18x-8}\right)^{2}=\left(2-6x\right)^{2}
Square both sides of the equation.
\left(-1\right)^{2}\left(\sqrt{18x-8}\right)^{2}=\left(2-6x\right)^{2}
Expand \left(-\sqrt{18x-8}\right)^{2}.
1\left(\sqrt{18x-8}\right)^{2}=\left(2-6x\right)^{2}
Calculate -1 to the power of 2 and get 1.
1\left(18x-8\right)=\left(2-6x\right)^{2}
Calculate \sqrt{18x-8} to the power of 2 and get 18x-8.
18x-8=\left(2-6x\right)^{2}
Use the distributive property to multiply 1 by 18x-8.
18x-8=4-24x+36x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-6x\right)^{2}.
18x-8-4=-24x+36x^{2}
Subtract 4 from both sides.
18x-12=-24x+36x^{2}
Subtract 4 from -8 to get -12.
18x-12+24x=36x^{2}
Add 24x to both sides.
42x-12=36x^{2}
Combine 18x and 24x to get 42x.
42x-12-36x^{2}=0
Subtract 36x^{2} from both sides.
7x-2-6x^{2}=0
Divide both sides by 6.
-6x^{2}+7x-2=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=7 ab=-6\left(-2\right)=12
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -6x^{2}+ax+bx-2. To find a and b, set up a system to be solved.
1,12 2,6 3,4
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 12.
1+12=13 2+6=8 3+4=7
Calculate the sum for each pair.
a=4 b=3
The solution is the pair that gives sum 7.
\left(-6x^{2}+4x\right)+\left(3x-2\right)
Rewrite -6x^{2}+7x-2 as \left(-6x^{2}+4x\right)+\left(3x-2\right).
2x\left(-3x+2\right)-\left(-3x+2\right)
Factor out 2x in the first and -1 in the second group.
\left(-3x+2\right)\left(2x-1\right)
Factor out common term -3x+2 by using distributive property.
x=\frac{2}{3} x=\frac{1}{2}
To find equation solutions, solve -3x+2=0 and 2x-1=0.
6\times \frac{2}{3}-\sqrt{18\times \frac{2}{3}-8}=2
Substitute \frac{2}{3} for x in the equation 6x-\sqrt{18x-8}=2.
2=2
Simplify. The value x=\frac{2}{3} satisfies the equation.
6\times \frac{1}{2}-\sqrt{18\times \frac{1}{2}-8}=2
Substitute \frac{1}{2} for x in the equation 6x-\sqrt{18x-8}=2.
2=2
Simplify. The value x=\frac{1}{2} satisfies the equation.
x=\frac{2}{3} x=\frac{1}{2}
List all solutions of -\sqrt{18x-8}=2-6x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}