Solve for x
x=\frac{2}{3}\approx 0.666666667
Graph
Share
Copied to clipboard
12x\left(x-1\right)-3\left(3-\left(7x+1\right)\right)=12x\left(x-3\right)+24
Multiply both sides of the equation by 6, the least common multiple of 3,2.
12x^{2}-12x-3\left(3-\left(7x+1\right)\right)=12x\left(x-3\right)+24
Use the distributive property to multiply 12x by x-1.
12x^{2}-12x-3\left(3-7x-1\right)=12x\left(x-3\right)+24
To find the opposite of 7x+1, find the opposite of each term.
12x^{2}-12x-3\left(2-7x\right)=12x\left(x-3\right)+24
Subtract 1 from 3 to get 2.
12x^{2}-12x-6+21x=12x\left(x-3\right)+24
Use the distributive property to multiply -3 by 2-7x.
12x^{2}+9x-6=12x\left(x-3\right)+24
Combine -12x and 21x to get 9x.
12x^{2}+9x-6=12x^{2}-36x+24
Use the distributive property to multiply 12x by x-3.
12x^{2}+9x-6-12x^{2}=-36x+24
Subtract 12x^{2} from both sides.
9x-6=-36x+24
Combine 12x^{2} and -12x^{2} to get 0.
9x-6+36x=24
Add 36x to both sides.
45x-6=24
Combine 9x and 36x to get 45x.
45x=24+6
Add 6 to both sides.
45x=30
Add 24 and 6 to get 30.
x=\frac{30}{45}
Divide both sides by 45.
x=\frac{2}{3}
Reduce the fraction \frac{30}{45} to lowest terms by extracting and canceling out 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}