Solve for x (complex solution)
x=\frac{i\sqrt{3\sqrt{145}+87}}{6}\approx 1.849360128i
x=-\frac{i\sqrt{3\sqrt{145}+87}}{6}\approx -0-1.849360128i
x=-\frac{i\sqrt{87-3\sqrt{145}}}{6}\approx -0-1.188781078i
x=\frac{i\sqrt{87-3\sqrt{145}}}{6}\approx 1.188781078i
Graph
Share
Copied to clipboard
6t^{2}+29t+29=0
Substitute t for x^{2}.
t=\frac{-29±\sqrt{29^{2}-4\times 6\times 29}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 6 for a, 29 for b, and 29 for c in the quadratic formula.
t=\frac{-29±\sqrt{145}}{12}
Do the calculations.
t=\frac{\sqrt{145}-29}{12} t=\frac{-\sqrt{145}-29}{12}
Solve the equation t=\frac{-29±\sqrt{145}}{12} when ± is plus and when ± is minus.
x=-i\sqrt{\frac{29-\sqrt{145}}{12}} x=i\sqrt{\frac{29-\sqrt{145}}{12}} x=-i\sqrt{\frac{\sqrt{145}+29}{12}} x=i\sqrt{\frac{\sqrt{145}+29}{12}}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}