Factor
y\left(6x-5\right)\left(x+2\right)
Evaluate
y\left(6x-5\right)\left(x+2\right)
Share
Copied to clipboard
y\left(6x^{2}+7x-10\right)
Factor out y.
a+b=7 ab=6\left(-10\right)=-60
Consider 6x^{2}+7x-10. Factor the expression by grouping. First, the expression needs to be rewritten as 6x^{2}+ax+bx-10. To find a and b, set up a system to be solved.
-1,60 -2,30 -3,20 -4,15 -5,12 -6,10
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -60.
-1+60=59 -2+30=28 -3+20=17 -4+15=11 -5+12=7 -6+10=4
Calculate the sum for each pair.
a=-5 b=12
The solution is the pair that gives sum 7.
\left(6x^{2}-5x\right)+\left(12x-10\right)
Rewrite 6x^{2}+7x-10 as \left(6x^{2}-5x\right)+\left(12x-10\right).
x\left(6x-5\right)+2\left(6x-5\right)
Factor out x in the first and 2 in the second group.
\left(6x-5\right)\left(x+2\right)
Factor out common term 6x-5 by using distributive property.
y\left(6x-5\right)\left(x+2\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}